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In this lecture...

• Turbine Blade Cooling 
• Blade cooling requirements
• Fundamentals of heat transfer 



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 3

Lect-27

Turbine blade cooling
• For a given pressure ratio and adiabatic 

efficiency, the turbine work per unit mass is 
proportional to the inlet stagnation 
temperature. 

• Therefore, typically a 1% increase in the 
turbine inlet temperature can cause 2-3% 
increase in the engine output.

• Therefore there are elaborate methods used for 
cooling the turbine nozzle and rotor blades.

• Turbine blades with cooling can withstand 
temperatures higher than that permissible by 
the blade materials.
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Turbine blade cooling
• Thrust of a jet engine is a direct function of the 

turbine inlet temperature. 
• Brayton cycle analysis, effect of maximum cycle 

temperature on work output and efficiency.
• Materials that are presently available cannot 

withstand a temperature in excess of 1300 K.
• However, the turbine inlet temperature can be 

raised to temperatures higher than this by 
employing blade cooling techniques.

• Associated with the gain in performance is the 
mechanical, aerodynamic and thermodynamic 
complexities involved in design and analysis of 
these cooling techniques.



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 5

Lect-27

Turbine blade cooling
• The environment in which the nozzles and 

rotors operate are very extreme.
• In addition to high temperatures, turbine 

stages are also subjected to significant 
variations in temperature.

• The flow is unsteady and highly turbulent 
resulting in random fluctuations in 
temperatures.

• The nozzle is subjected to the most severe 
operating conditions.
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Turbine blade cooling
• Because the relative Mach number that the 

rotor experiences, it perceives lower 
stagnation temperatures (about 200-300 K) 
than the nozzle.

• However the rotor experience far more 
stresses due to the high rotational speeds.

• The highest temperatures are felt primarily 
by the first stage.

• Cooling problems are less complicated in 
later stages of the turbine. 
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Turbine blade cooling
• There are several modes of failure of a 

turbine blade.
• Oxidation/erosion/corrosion

• Occurs due to chemical and particulate 
attack from the hot gases.

• Creep
• Occurs as a result of prolonged 

exposure to high temperatures.
• Thermal fatigue

• As a result of repeated cycling through 
high thermal stresses.
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Turbine blade cooling

Combustion products
Stator Rotor

Average radial 
temperature profile

Average temperature profile entering a turbine stage
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Fundamentals of heat transfer
• Turbine blade cooling involves application of 

concepts of heat transfer. 
• Heat transfer is a well established area and 

substantial knowledge base is available in 
the form of books, journals and other forms 
of literature.

• We shall take a brief overview of the 
concepts of heat transfer that are required 
for understanding of the problems involved 
in turbine blade cooling.
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Fundamentals of heat transfer
• There are three modes of heat transfer

• Conduction
• Convection
• Radiation

• Conduction
• Heat transfer between two bodies or two parts of 

the same body through molecules which are more or 
less stationary.

• In liquids and gases, conduction results from 
transport of energy by molecular motion near the 
walls and in solids it takes place by a combination of 
lattice vibration and electron transport. 
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Fundamentals of heat transfer
• Conduction involves energy transfer at a 

molecular level with no movement of 
macroscopic portions of matter relative to one 
another.

• Convection
• Involves mass movement of fluids
• When temperature difference produces a 

density difference – leads to mass movement –
Free convection

• Caused by external devices like a pump, blower 
etc. Forced convection
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Fundamentals of heat transfer
• Radiation

• Energy transfer taking place through 
electromagnetic waves

• Radiation does not require a medium
• For the temperatures that are encountered 

in a turbine, conduction and convection are 
the major modes of heat transfer.

• Radiative heat transfer is usually negligible 
and is normally not considered in turbine 
heat transfer analysis.
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Fundamentals of heat transfer
• Heat transfer by conduction

• The rate of heat transfer by conduction 
can be written as (Fourier’s conduction 
law)
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Fundamentals of heat transfer
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Fundamentals of heat transfer
• Heat transfer by convection

• Unlike in a solid, heat transfer in a fluid 
can take place through conduction as 
well as convection.

• In general, the temperature and velocity 
fields are coupled and have strong 
influence on each other.

• In modern day turbines, velocity as well 
as temperature gradients are high.

• Forced convection is the dominant 
phenomena in turbine flows. 
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Fundamentals of heat transfer
• In a typical turbine blade, the boundary layer 

developing on the blade surface and the 
freestream temperature are of interest.

• The boundary layer that acts as a buffer 
between the solid blade and the hot 
freestream, offers resistance to heat transfer.

• Heat transfer occurs in this viscous layer 
between the blade and the fluid through both 
conduction and convection.

• The nature of the boundary layer (laminar or 
turbulent) plays an important role in the heat 
transfer process.
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Fundamentals of heat transfer

Stagnation point

Possibility of 
shock-boundary 
layer interaction

Unsteady wake 
flow

Possibility of transition followed by 
relaminarisation

Variation of heat transfer around a turbine blade



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 18

Lect-27

Fundamentals of heat transfer
• Due to close coupling between fluid 

mechanics and heat transfer, each of the 
regions around a blade require special 
analysis valid for that region.

• The overall heat transfer is related to the 
temperature difference between the fluid 
and the solid through the Newton's law of 
cooling: 
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Fundamentals of heat transfer
• The heat transfer coefficient is non-

dimensionalised by the thermal conductivity 
and characteristic length:

• In addition to Nusselt number there are other 
important non-dimensional groups namely, 
Reynolds number (Re), Prandtl number (PR), 
Eckert’s number (Ec), Grashof number (Gr) 
Richardson number (Ri) and Stanton number 
(St).

• All these numbers play a significant role in a 
transfer analysis depending upon the 
application.
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Laminar boundary layer (forced
convection)
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• The transport equations for velocity and 
temperature are similar and therefore the 
coupling is obvious.
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Laminar boundary layer (forced
convection) 

• It can be shown that the heat transfer is 
related to the Reynolds number and Prandtl
number through the Nusselt number.

• Heat transfer is a function of (Rex)1/2 and 
PR1/3 and Cf. 

• A thin boundary layer has a larger heat 
transfer. 

• Therefore maximum heat transfer in a 
turbine blade occurs near the stagnation 
point and the leading edge.
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Turbulent boundary layer (forced 
convection)

• The heat transfer due to turbulent 
fluctuations is written as:

• There is a close coupling between the 
momentum transfer and heat transfer, 
which in turn translates to coupling 
between heat flux and shear stress.

• We can therefore define the turbulent 
Prandtl number as
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Turbulent boundary layer (forced 
convection)
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There is a clear difference between PR and PRt. 
The Prandtl number (PR) is a physical property of 
the fluid, whereas the Turbulent Prandlt number 
(PRt) is a property of the flowfield.
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Turbulent boundary layer (forced 
convection)
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Fundamentals of heat transfer
• Based on our discussion on laminar and 

turbulent flows:
• Heat transfer is higher for a thin boundary 

layer than a thick boundary layer as the 
temperature gradient is higher for a thin 
boundary layer.

• Heat transfer for a turbulent boundary layer 
is higher than a laminar boundary layer.

• Heat transfer in thin viscous regions like 
stagnation point or leading edge, is very 
high. The velocity and temperature 
gradients are extremely high in these zones.
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Turbine blade cooling

• In order to decide the cooling methodology to 
be used in a turbine blade, a very strong 
understanding of the heat transfer mechanisms 
are essential.

• Turbine blade cooling requires significant 
amount of compressor air (as high as 20%). 

• The cooling air also mixes with the turbine flow 
leading to losses.

• Due to the above, vigorous analysis is carried 
out to minimize the amount of cooling as well 
as the negative aerodynamic effects of cooling.
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• Turbine Blade Cooling 
• Blade cooling requirements
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