Lect 28

Prof. Bhaskar Roy, Prof. A M Pradeep **Department of Aerospace Engineering, IIT Bombay**

Axial Flow Turbine

Blade Cooling Technologies

Time history of Turbine blade cooling

- 1950 Uncooled blade Temp. 1000 to 1100 K
- 1960 Internal 1 or 2 pass cooling, 1200-1400 K
- 1970 Distributed internal convection cooling 1300 – 1500 K
- 1980 Film Cooling + Internal cooling 1600- 1800 K
- 1990 Film + Impingement cooling– 1600-1900 K

Temperature on turbine blade surface (felt by it)

$$
T_{o-bl} = \frac{T_{o1} + T_{o2}}{2} - \frac{U_{mean}^2}{2 \cdot C_{p-gas}} (1 - 2.DR)
$$
Where,
NR = R_x

$$
Nu \propto f_1(Re).f_2(Pr),
$$

\n $Nu = 0.0296.Re^{0.8}.Pr^{1/3}$

Where, Nu – Nusselt's No. ; Pr – Prandtl no.; Re – Reynolds no.

Lect 28

Heat Transfer

- The heat transfer is mainly by surface convection, conduction and then internally mainly by forced convection.
- *Radiation heat transfer is negligible.*

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Internal Cooling air passages CFD simulation Blade Fabrication Distributed **Report of the Contract of Security 1989** Internal Blade cooling

- Blade Temperature may vary along the blade surface from LE to TE by 200 to 300 K
- Blade temperature may also vary from the root to the tip of a rotor
- Maximum blade temperature is felt at the LE of the first stator – as the flow comes from C.C.
- HP turbine blades have maximum temperature and maximum temperature gradient across both the rotor and the stator
- Blades are thermally loaded in cycles of operation
- Turbine failure occurs mostly in creep (thermal fatigue)

Lect 28

Turbine blade internal temperatures captured : ref : ONERA, France

TURBOMACHINERY AERODYNAMICSOINE Cooling

Internal convection cooling (b) Internal impingement cooling (a)

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Hot Gas Zet Cooling air Cooling air (d) (C) (d) Full blade film cooling (c) Discrete film cooling

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

(e) Full blade transpiration cooling (porous blade)

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Radial Outward flow in Chamber Film Cooled Convection Convection Cooled Cooled **RADIAL FILM COOLED INLET IMPINGEMENT** (a) **AIRFLOW COOLED Impingement Cooled** Convection Cooled **South and the Contract of the Second Second
Contract Second Second Second Second Second
Contract Second Second Second Second Second Second Second Secon** Radial airflow into chamber (b

14

Lect 28

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Moving **Blade Fixed Vane** Cooling Air

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

RADIAL AIRFLOW INTO CHAMBER (d)

d) Transpiration cooled

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 28

• **Need for high turbine temperature was reduced due to high compressor pressure ratio**

• **Advanced cooling has extended both TET and Compr ratio**

19

TURBULENCE SUCTION SURFACE PROMOTERS SHAPED INTERNAL CHANNEL FILM COOLINO RESSURE SURFACE TRAILING EDGE EJECTION IMPINGE-TURBULENCE MENT PROMOTERS \bullet **COOLING PIN FINS** \circ \circ \overline{u} COOLING

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Next Lecture ---

Design of Axial Turbine Blades