Lect- 38

In this lecture...

- Computational Fluid Dynamics for turbomachinery
 - Introduction and overview
 - Grid generation

TURBOMACHINERY AERODYNAMICS

- Computational Fluid Dynamics (CFD) is a powerful analytical tool.
- Is a third approach for analysis besides experimental approach and theoretical approach.
- CFD compliments theory and experiments and is not primarily intended to replace these.
- CFD is currently a commonly used research tool.
- CFD is an essential component of the design, analysis and optimization cycle.

- There are various levels of CFD analysis
 - Simple Euler (potential flow) solutions
 - 2-D/axisymmetric Navier-Stokes solution
 - 3-D Navier-Stokes solution
 - Reynolds Averaged Navier-Stokes (RANS) and Unsteady RANS (URANS)
 - Large Eddy Simulation (LES)
 - Direct Numerical Simulation (DNS)
- CFD analysis could also be
 - Steady or unsteady
 - Incompressible or compressible
 - Laminar or turbulent
 - Internal or external flow

- CFD involves solving the fundamental governing equations of fluid flow:
 - Conservation of mass
 - Conservation of momentum
 - Conservation of energy
 - Equation of state
 - Species conservation (reacting flows)

- Steps in CFD solution
 - Setting up the domain
 - Discretisation of the domain in space and time (for unsteady solution)
 - Defining boundary conditions
 - Solving the appropriate governing equations for the domain on the discretised points
 - Post-processing and analysis of the converged solution.

- Turbomachinery: complex shear flows
 - Shear layers on rotating surfaces
 - Shear layers developing on curved surfaces
 - Separated flows: shock-boundary layer interaction, corner separation...
 - Swirling flows and vortices
 - Interacting boundary layers

- Challenges in turbomachinery CFD
 - Grid generation
 - Complex geometry
 - Rotating domain
 - Flow is 3-D, highly unsteady, rotating, and turbulent
 - Capturing the losses and other viscous effects
 - Turbulence modelling
 - Fluid-structure interactions

Lect-38

- Types of simulations
 - 2D, quasi-3D, 3D
 - 2D
 - Conceptual design phase
 - Long blades/vanes (LP turbines)
 - Reasonable results
 - Quasi-3D
 - Area of flow path changes
 - Extra source terms for acceleration/deceleration or boundary layer growth

Lect-38

- Types of simulations
 - 3D
 - True geometry required
 - Simulate secondary flows, shock locations
 - End wall boundary layers
 - Transient or stationery
 - Stationery simulations more common
 - Transient: flow unsteadiness, vortex shedding, wake interaction with rotors

Lect-38

- Solver
 - Euler
 - 3D NS
 - RANS, URANS
 - DES, DDES
 - •
 - •
 - LES
 - •
 - DNS

- Grid/mesh
 - Structured, unstructured and hybrid grids
- Structured grid
 - More suited for well-defined geometries
 - More difficult to generate
 - Easier to control near-wall clustering of cells
- Unstructured grid
 - Primarily intended for complex geometries
 - Easier to generate
 - Not much control over the near-wall clustering of cells
 - Easily automated

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-38

Grid Generation

Structured grid with multiple blocks

Lect-38

Grid Generation

Unstructured grid

- Multi-block structured grid
 - In order to generate structured grid over curved surfaces, multiple blocks need to be defined.
 - Interface of the blocks need to be carefully managed.
 - Grid topology needs to be appropriately defined.
 - The Grid topology also needs to account for the change in geometry of the blade from hub to tip.

- Topology
 - Is a structure off blocks that acts as a framework for placing mesh elements.
 - Blocks are laid out without gaps with shared edges and corners.
 - Blocks contain same number of elements along each side.
 - Is usually invariant from hub to tip.
 - Can be edited on 2-D layers from hub to tip sections.
 - Number of blocks will dictate the skewness of the grid elements.

- Grid topology schemes
 - O-grid:
 - Usually used around the blade by forming a continuous loop around it
 - Yields excellent boundary layer resolution
 - gives good control over the y⁺ values that needs to be tightly monitored
 - Provides near orthogonal elements on the blades

Lect-38

Grid Generation

O-grid topology

- J-grid:
 - Usually used near leading and trailing edges
 - Wraps up in opposite directions at the leading and trailing edges
- H-grid:
 - Tends to complete the meshing by adding some blocks in an unstructured manner
 - The structured blocks extend from upstream of the LE, downstream of the TE and between the blades and the periodic surfaces

Lect-38

Grid Generation

J-grid topology

H-grid topology

- Other topology options include C-grid and L-grid.
- These are also often used at the leading and trailing edges.
- All the above grid topologies are used along with an O-grid for proper resolution of the boundary layer.
- Proper resolution of the leading and trailing edge radii are important.
- Establishing grid-independence or grid-insensitivity of the results is now a standard practice.

Lect-38

Grid Generation

L-grid topology

C-grid topology

- To capture the flow physics correctly, the boundary conditions must be set appropriately.
- Quality of the solutions is a strong function of the boundary conditions.
- Turbomachinery flows
 - Inlet boundary
 - Exit boundary
 - Periodic boundary
 - Walls or surfaces

Boundary conditions

Typical flow domain with the boundaries

- Inlet boundary conditions
 - Depends upon the application
 - Flow conditions (incompressible or compressible)
 - Total pressure, total temperature, velocity components/profile (most commonly used)
 - There are other forms of specifying the inlet boundary conditions: velocity inlet, mass flow inlet etc.: not commonly used due to several limitations.

- Exit boundary conditions
 - Exit static pressure to achieve the required mass flow
 - It is also possible to specify a static pressure distribution at the exit domain.
 - Alternatively, mass flow can be directly specified at the exit.
 - For incompressible flows, using either of the two does not affect the results.
 - However, for compressible flows, static pressure outlet condition yields better results.

Lect-38

- For single passage simulations, periodic boundary conditions are used for simulating the effect of a blade row.
- The domain must be appropriately chosen to ensure that periodic boundary conditions are indeed valid.
- On surfaces (blade, hub and shroud), no-slip and adiabatic conditions are usually used.
- In turbines with hot gases present, the adiabatic condition may be replaced by constant heat flux condition.

Boundary conditions

Typical flow domain with the boundaries

In this lecture...

- Computational Fluid Dynamics for turbomachinery
 - Introduction and overview
 - Grid generation

TURBOMACHINERY AERODYNAMICS