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In this lecture...

• Computational Fluid Dynamics for 
turbomachinery
• Introduction and overview
• Grid generation
• Boundary conditions
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Computational Fluid Dynamics
• Computational Fluid Dynamics (CFD) is a 

powerful analytical tool.
• Is a third approach for analysis besides 

experimental approach and theoretical 
approach.

• CFD compliments theory and 
experiments and is not primarily 
intended to replace these.

• CFD is currently a commonly used 
research tool.

• CFD is an essential component of the 
design, analysis and optimization cycle.
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Computational Fluid Dynamics
• There are various levels of CFD analysis

• Simple Euler (potential flow) solutions
• 2-D/axisymmetric Navier-Stokes solution
• 3-D Navier-Stokes solution

• Reynolds Averaged Navier-Stokes (RANS) 
and Unsteady RANS (URANS)

• Large Eddy Simulation (LES)
• Direct Numerical Simulation (DNS)

• CFD analysis could also be
• Steady or unsteady
• Incompressible or compressible
• Laminar or turbulent
• Internal or external flow
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Computational Fluid Dynamics
• CFD involves solving the fundamental 

governing equations of fluid flow:
• Conservation of mass
• Conservation of momentum
• Conservation of energy
• Equation of state
• Species conservation (reacting 

flows)
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Computational Fluid Dynamics
• Steps in CFD solution

• Setting up the domain 
• Discretisation of the domain in space 

and time (for unsteady solution)
• Defining boundary conditions
• Solving the appropriate governing 

equations for the domain on the 
discretised points

• Post-processing and analysis of the 
converged solution.
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Computational Fluid Dynamics

• Turbomachinery: complex shear 
flows
• Shear layers on rotating surfaces
• Shear layers developing on curved 

surfaces
• Separated flows: shock-boundary 

layer interaction, corner separation…
• Swirling flows and vortices
• Interacting boundary layers
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Computational Fluid Dynamics
• Challenges in turbomachinery CFD

• Grid generation
• Complex geometry
• Rotating domain

• Flow is 3-D, highly unsteady, rotating, 
and turbulent
• Capturing the losses and other 

viscous effects
• Turbulence modelling

• Fluid-structure interactions 
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Computational Fluid Dynamics
• Types of simulations

• 2D, quasi-3D, 3D
• 2D

• Conceptual design phase
• Long blades/vanes (LP turbines) 
• Reasonable results

• Quasi-3D
• Area of flow path changes
• Extra source terms for 

acceleration/deceleration or boundary 
layer growth
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Computational Fluid Dynamics
• Types of simulations

• 3D 
• True geometry required
• Simulate secondary flows, shock locations
• End wall boundary layers 

• Transient or stationery
• Stationery simulations more common
• Transient: flow unsteadiness, vortex 

shedding, wake interaction with rotors
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Computational Fluid Dynamics
• Solver

• Euler
• 3D NS
• RANS, URANS
• DES, DDES
•
•
• LES
•
• DNS
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Grid Generation
• Grid/mesh

• Structured, unstructured and hybrid grids
• Structured grid

• More suited for well-defined geometries
• More difficult to generate
• Easier to control near-wall clustering of cells

• Unstructured grid
• Primarily intended for complex geometries
• Easier to generate
• Not much control over the near-wall clustering of 

cells
• Easily automated
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Grid Generation

Structured grid with multiple blocks

Blocks
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Grid Generation

Unstructured grid
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Grid Generation
• Multi-block structured grid

• In order to generate structured grid 
over curved surfaces, multiple blocks 
need to be defined.

• Interface of the blocks need to be 
carefully managed.

• Grid topology needs to be 
appropriately defined. 

• The Grid topology also needs to 
account for the change in geometry of 
the blade from hub to tip.



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 16

Lect-38

Grid Generation
• Topology

• Is a structure off blocks that acts as a 
framework for placing mesh elements.

• Blocks are laid out without gaps with 
shared edges and corners.

• Blocks contain same number of 
elements along each side.

• Is usually invariant from hub to tip.
• Can be edited on 2-D layers from hub to 

tip sections.
• Number of blocks will dictate the 

skewness of the grid elements.
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Grid Generation
• Grid topology schemes

• O-grid: 
• Usually used around the blade by 

forming a continuous loop around it
• Yields excellent boundary layer 

resolution 
• gives good control over the y+

values that needs to be tightly 
monitored

• Provides near orthogonal elements 
on the blades
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Grid Generation

O-grid topology
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Grid Generation
• J-grid: 

• Usually used near leading and trailing 
edges

• Wraps up in opposite directions at the 
leading and trailing edges

• H-grid:
• Tends to complete the meshing by 

adding some blocks in an unstructured 
manner

• The structured blocks extend from 
upstream of the LE, downstream of 
the TE and between the blades and 
the periodic surfaces
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Grid Generation

J-grid topology H-grid topology
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Grid Generation
• Other topology options include C-grid 

and L-grid.
• These are also often used at the 

leading and trailing edges.
• All the above grid topologies are used 

along with an O-grid for proper 
resolution of the boundary layer.

• Proper resolution of the leading and 
trailing edge radii are important.

• Establishing grid-independence or 
grid-insensitivity of the results is now 
a standard practice.
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Grid Generation

L-grid topology C-grid topology



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 23

Lect-38

Boundary conditions
• To capture the flow physics correctly, the 

boundary conditions must be set 
appropriately.

• Quality of the solutions is a strong 
function of the boundary conditions.

• Turbomachinery flows
• Inlet boundary
• Exit boundary
• Periodic boundary 
• Walls or surfaces
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Boundary conditions

Typical flow domain with the boundaries
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Boundary conditions
• Inlet boundary conditions

• Depends upon the application
• Flow conditions (incompressible or 

compressible)
• Total pressure, total temperature, 

velocity components/profile (most 
commonly used)

• There are other forms of specifying 
the inlet boundary conditions: velocity 
inlet, mass flow inlet etc.: not 
commonly used due to several 
limitations.
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Boundary conditions
• Exit boundary conditions

• Exit static pressure to achieve the 
required mass flow

• It is also possible to specify a static 
pressure distribution at the exit domain.

• Alternatively, mass flow can be directly 
specified at the exit.

• For incompressible flows, using either of 
the two does not affect the results.

• However, for compressible flows, static 
pressure outlet condition yields better 
results.
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Boundary conditions
• For single passage simulations, periodic 

boundary conditions are used for 
simulating the effect of a blade row.

• The domain must be appropriately 
chosen to ensure that periodic boundary 
conditions are indeed valid.

• On surfaces (blade, hub and shroud), 
no-slip and adiabatic conditions are 
usually used. 

• In turbines with hot gases present, the 
adiabatic condition may be replaced by 
constant heat flux condition. 
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Boundary conditions

Typical flow domain with the boundaries
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In this lecture...

• Computational Fluid Dynamics for 
turbomachinery
• Introduction and overview
• Grid generation
• Boundary conditions
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