Lect 40

Fundamentals of CFD for use in Turbomachinery Analysis

- Physics of fluid mechanics are often captured in Partial Differential Equations (PDEs), mostly 2nd order PDEs.
- Generally the governing equations are a set of coupled, non-linear PDEs valid within an arbitrary (or irregular) domain and are subject to various initial and boundary conditions.
- Purely analytical solutions of many fluid mechanic equations are limited due to imposition of various boundary conditions of typical fluid flow problems.
- Experimental data are often used for validation of CFD solutions. Together they are used for design purposes.

Linear and Non-linear PDEs

Linear:

$$\frac{\partial u}{\partial t} = -a \frac{\partial u}{\partial x}$$
 where, $a > 0$
(1-d Wave Equation) $\frac{\partial t}{\partial t} = -a \frac{\partial u}{\partial x}$

Non-Linear -u <u>∂u</u> ðU (Inviscid Flow) ∂**x** A Laplace's Equation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial x^2}$ Poisson's =f(x,y)equation

where normally x and y are independent variables and ϕ is a dependant variable

Lect 40

$$A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \cdot \partial y} + C\frac{\partial^2 \phi}{\partial x^2} + D\frac{\partial^2 \phi}{\partial y^2}$$

A,B,C,D,E,F,G are functions of x,y & ϕ

 $+ E \frac{\partial \phi}{\partial y} + F \phi + G = 0$

Assume that f = f(x, y) is a solution of the above differential equation.

This solution, typically is a surface in space, and the solutions produce space curves called characteristics.

2nd order derivatives along the characteristics are often indeterminate and may be discontinuous across the characteristics.

The 1st order derivatives are continuous.

A simpler version of the 2nd order equation may be written as:

$$A\left(\frac{dy}{dx}\right)^2 - B\left(\frac{dy}{dx}\right) + C = 0$$

Solution of this yields the equations of the characteristics in the physical space :

$$\left(\frac{dy}{dx}\right) = \frac{B \pm \sqrt{B^2 - 4AC}}{2A}$$

- These characteristic curves can be real or imaginary depending on the values of $(B^2 4AC)$.
- A 2nd order PDE is classified according to the sign of $(B^2 4AC)$:
- (a) $(B^2 4AC) < O Elliptic M < 1.0 Subsonic flow$
- (b) $(B^2 4AC) = 0$ -- Parabolic M = 1.0 Sonic flow
- (c) $(B^2 4AC) > 0$ -- Hyperbolic M>1.0 –Supersonic

flow

- An Elliptic PDE has no real characteristics . A disturbance is propagated instantly in all directions within the region
- The domain solution of an elliptic PDE is a closed region. Providing the boundary condition uniquely yields the solution within the domain
- The solution domain for a parabolic PDE is open region.
- For Parabolic PDE one characteristic line exists
- A hyperbolic PDE has two characteristic lines
- A complete description of 2nd order hyperbolic
 PDE requires two sets of initial conditions and two sets of boundary conditions

Initial and Boundary conditions (ICs and BCs)

- ICs : A dependant variable is prescribed at some initial condn
- BCs : A dependent variable or its derivative must satisfy on the boundary of the domain of the PDE
- **1) Dirichlet BC** : Dependent Variable prescribed at boundary
- 2) Neumann BC: Normal gradient of the D.V. is specified
- **3)** Robin BC : A linear combination of Dirichlet & Neumann
- 4) Mixed BC : Some part of the boundary has Dirichlet BC and some other part has Neumann BC

Body Surface

BCs

ce Far

Far Field

Symmetry

Lect 40

TURBOMACHINERY AERODYNAMICS

10

Lect 40

Unstructured Grid generation

Lect 40

CFD in Blade Design

Blade design system

Lect 40

18

Through Flow Program

Input: a) i) Annulus Information

- ii) Blade row exit information
- iii) Inlet profiles of Pr, Temp, a₁
- iv) Inlet Mass flow
- v) Rotational speeds of rotors
- vi) Blade geometry, Loss distributions
- vii) Passage averaged perturbation terms

Output : b) i) Blade row inlet and exit conditions ii) Streamline definition and streamtube height

Lect 40

Blade-to-blade Flow Program

Lect 40

Blade-to-blade Flow Program

Blade-to-Blade program

Input : Blade geometry Inlet and Exit Velocity distribution Streamline Definition Output : Surface velocity distribution Profile and loss distribution

Section Stacking Program

Input : Blade section geometry Stacking points and stacking line Axial and Tangential leans (sweep and Dihedral)

<u>Output</u> : Three-Dimensional blade geometry

Lect 40

Lect 40

Blade-to-Blade program

2D MISES code for Cascade Analysis

Lect 40

2D MISES code for Cascade Analysis

Final Output : Compressor Rotor Characteristics

Thank you for participating in this **NPTEL** course