DEPARTMENT OF AEROSPACE ENGINEERING
 I I T Kanpur
 Helicopter Theory

C.Venkatesan

1. Relevant data pertaining to a helicopter are given in the following.

Weight of the helicopter: $\quad 36000 \mathrm{~N}$

Density of air: ρ	$1.225 \mathrm{~kg} / \mathrm{m}^{3}$
Number of blades: N	4
Blade radius: R	6 m
Blade chord: C	0.4 m
Profile drag coefficient: $\mathrm{C}_{\mathrm{d} 0}$	0.01
Lift curve slope: a	5.73
Rotor angular rate: Ω	$10 \pi \mathrm{rad} / \mathrm{sec}$
Tip loss factor: B	0.97
Root cut-out:	0.15 R

Blade twist for 4 different configurations: $\theta_{\mathrm{tw}}=0$ deg, -10 deg. (linear twist) -20 deg. (linear twist) ideal twist with $\theta_{\text {tip }}$

The helicopter is under hovering condition.
Assuming non-uniform inflow, evaluate the following and show each item in one figure:
i) Variation of pitch angle with non-dimensional radial location (all 4 twist cases).
ii) Variation of angle of attack with non-dimensional radial location (all 4 twist cases)
iii) Variation of induced velocity with non-dimensional radial location (all 4 twist cases)
iv) Variation sectional induced drag with non-dimensional radial location (all 4 twist cases)
v) Variation sectional profile drag with non-dimensional radial location (all 4 twist cases)

Note: Show the plots for non-dimensional radius from 0.15 to 1.0

