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Necessary Conditions of 
Optimality in Optimal Control

State Equation

Costate Equation

Optimal Control 
Equation

Boundary Condition
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Necessary Conditions of 
Optimality: Salient Features

State and Costate equations are dynamic equations

State equation develops forward whereas Costate 
equation develops backwards

Optimal control equation is a stationary equation

The formulation leads to Two-Point-Boundary-Value 
Problems (TPBVPs), which demand 
computationally-intensive iterative numerical 
procedures to obtain the optimal control solution
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Classical Methods to Solve 
TPBVPs

Gradient Method

Shooting Method

Quasi-Linearization Method
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Gradient Method

Assumptions:
• State equation satisfied

• Costate equation satisfied

• Boundary conditions satisfied

Strategy:
• Satisfy the optimal control equation
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Gradient Method
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Gradient Method

After satisfying the state & costate equations 
and boundary conditions, we have
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Gradient Method

We select

This lead to

Note:

Eventually,
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Gradient Method: Procedure

Assume a control history  (not a trivial task)

Integrate the state equation forward

Integrate the costate equation backward

Update the control solution
• This can either be done at each step while integrating 

the costate equation backward or after the integration 
of the costate equation is complete

Repeat the procedure until convergence
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Gradient Method: Selection of 

Select      so that it leads to a certain 
percentage reduction of 
Let the percentage be 
Then

This leads to 
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Objective:
Air-to-air missiles are usually launched from an aircraft in the forward direction. 
However, the missile should turn around and intercept a target “behind the aircraft”.

To execute this task, the missile should turn around by -180o and lock onto its 
target (after that it can be guided by its own homing guidance logic). 
Note: Every other case can be considered as a subset of this extreme scenario!

A Real-Life Challenging Problem

Aircraft

Missile

Target
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MATHEMATICAL PERSPECTIVE:
• Minimum time optimization problem
• Fixed initial conditions and free final time problem

SYSTEM DYNAMICS:
Equations of motion for a missile in vertical plane. The non-dimensional equations 
of motion (point mass) in a vertical plane are:
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A Real-Life Challenging Problem
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2

The non-dimensional parameters are defined as follows:
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A Real-Life Challenging Problem
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0

COST FUNCTION:
Mathematically the problem is possed as follows to find the
control minimizing cost function:

                                     

Constraints (0) 0  ,     (0) initial Mach numbe
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A Real-Life Challenging Problem
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( )2

2
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Choosing  as the independent variable the equations are reformulated as follows:
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A Real-Life Challenging Problem
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Task
Solve the problem using gradient method. Assume (0) 0.5 and 
engagement height as 5 km. Next, generate the trajectories and 
tabulate the values of   for various  values.

Use the following system par
f

M

M q
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ameters 
(typical for an air-to-air missile):

 240 
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Use standard atmosphere chart for the atmospheric data.
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Necessary Conditions of 
Optimality (TPBVP): A Summary

State Equation

Costate Equation

Optimal Control 
Equation

Boundary Condition
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Shooting Method
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Shooting Method
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Shooting Method
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Shooting Method
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Shooting Method



Quasi-Linearization Method
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Quasi-Linearization Method
Problem:

( )
( ) ( )

{ }

Differential Equation:   , ,

Boundary condition:    ,
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Assumption:

0This vector differential equation has a unique solution over , ft t t⎡ ⎤∈ ⎣ ⎦

Trick:
The nonlinear multi-point boundary value problem is transformed into
a sequence of linear non-stationary boundary value problems, the solution
of which is made to approximate the solution of the true problem.
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Quasi-Linearization Method
( ) ( )

( )

(1)  Guess an approximate solution    1  (it need not satisfy the B.C.)

For updating this solution, proceed with the following steps:
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Quasi-Linearization Method:
Solution by STM Approach
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Quasi-Linearization Method:
Solution by STM Approach
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(4)  The particular solution   can be obtained by observing that
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Quasi-Linearization Method:
Solution by STM Approach
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Quasi-Linearization Method:
Convergence Property

( ){ }
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1

Under the assumption that the problem admits a unique solution for ,

it can be shown that the sequence of vectors  converge to the true solution.

Morover, the process can be shown to have
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 "quadratic convergence" in general 

i.e., it can be shown that ,  where .

Further more, for a large class of systems, it can be shown to have "monotone 
convergence" as well, i.e.

N N N NZ t Z t k Z t Z t k f N+ −− ≤ − ≠

 there won't be any over-shooting in the convergence process.

R. Kabala, "On Nonlinear Differential Equations, The Maximum Operation
                    and Monotone Convergence", J. of Mathem
Reference :

atics and Mechanics, Vol. 8,
                    1959, pp. 519-574.
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A Demonstrative Example
Problem: ( ) ( )

1
2 2 2
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1) State Equation:                      
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e this problem using shooting and quasi-linearization methods.
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