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Test Signals Commonly Used in 
Control Systems

Ref: N. S. Nise: 
Control Systems Engineering, 
4th Ed., Wiley, 2004
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Example – 2
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Laplace 
Transform

Ref: N. S. Nise: 
Control Systems Engineering, 
4th Ed., Wiley, 2004
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Laplace 
Transform

Ref: N. S. Nise: 
Control Systems Engineering, 
4th Ed., Wiley, 2004
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Result :
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Examples
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Result :
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Result :
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Result :
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Generalization
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Block Diagram Representation
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Transfer Function Representation
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Any physical system that can be represented by a 
linear, time-invariant constant coefficient differential 
equation can be modeled as a Transfer function
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Taking Laplace Transform

Assume all initial conditions as zero (linear system)

Transfer Function Representation
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System Block Diagram

Definitions:
Roots of numerator:    ZEROS
Roots of denominator: POLES

: Proper Transfer Function
: Strictly Proper Transfer Function

m n
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Example – 1:
Simple First Order System
(R-L Circuit)
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Example – 2: (Second-order system)
Transfer Function Modeling of Car 
Suspension System

Xo=Vertical motion of 
the body 

Xi= motion of the body 
at the point P
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Car Suspension System
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System Response: R-L Circuit
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System Response: R-L Circuit
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System Response: R-L Circuit

A Pole of the input function generates the form of 
the forced response

A Pole of the system transfer function generates 
the form of the natural response

The zeros and poles together generate the exact 
amplitudes for both forced and natural responses 

d u e  to  in p u t

d u e  to  e n e rg y  d is s ip a t io n   

T o ta l re s p o n s e   =   F o rc e d  re s p o n s e +  

                                 N a tu ra l re s p o n s e
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System Response: R-L Circuit

A system is stable if the natural response 
approaches zero as time approaches infinity.
This demands e-αt form in the natural 
response that means all the poles should lie 
in the left half of the s-plane 
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First Order Systems

( )1/ :  Time constant of the systemaτ =
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Output response for a unit step input

The output will reach its final value as
Initial speed of response:

Unit Step Response of 
First-Order System
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dc e
dt
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τ τ
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Unit Step Response of a 
First-Order System

Settling time: 4 4sT T τ= =

T τ=
1A =

( )x t
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Second-Order System
(R-L-C Circuit)

ζ = damping ratio
ωn=un damped 
natural frequency
Complex poles 
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Unit Step Response
Second-Order System
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Transient Response 
Specifications
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Transient response specifications of 
an Under-damped system 
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Second-Order Systems: 
Pole Locations and Step Responses

Over damped

Undamped

Critically damped

Under damped
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Second-order Response As A 
Function Of Damping Ratio
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Under Damped System Pole Plot 
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Step Responses of Second Order 
Under Damped Systems with Pole 
Movement

with constant 
real part

with constant 
imaginary part

with constant 
damping ratio

Envelop same

Frequency same

Same Overshoot
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Effect of Adding a Pole 

at infinity

Response
non dominant pole is near
dominant second-order pair

far from the pair At Infinity

Residue of non dominant pole and its 
response becomes zero as the non dominant 
pole approaches infinity 
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Effect of Adding a Zero

Zeros and Poles together dictate the 
exact response (including magnitude)

Zeros mainly effect the residues (i.e. the 
constants in the numerator in the partial 
fraction expansion)

Closer the zero is to the dominant poles, 
the greater is its effect on the transient 
response
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Effect of Adding a Zero: Analysis
( )

( ) ( ) ( ) ( )

( )

Let  :  Response of a system with unity in the numerator.
Then by adding a zero, the Laplace transform of the response
of the new system will be  

:  A scaled version of the original resp

C s

a s C s a C s sC s

aC s

+ = +

( )
onse

:  The derivative of the original response

Thus, if  is small (in the LH plane), the derivative term
is predominant. Hence, more overshooting is expected.

s C s
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Effect of Adding a Zero for Small 
Values of a in the Left-half s-plane

For small values of ‘a’, one 
gets more overshooting
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Effect of Adding a Zero in RHS 
of s-plane

( ) ( ) ( ) ( ) , 0
In this case the scaled response and derivative 
terms oppose each other!

Thus, if the derivative term is large, then the 
system response will initially follow the derivative
"in the opp

a s C s a C s sC s a− = − >

osite direction" of the scaled response!
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Effect of Adding a Zero in the 
Right Half s-plane

The system is called
non-minimum phase

Note: Tail-controlled
aerospace vehicles 
are typical examples
for non-minimum 
phase systems
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