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Laplace Transform

Laplace Transform of f (t):

o0

F(s) = j f(t) e *'dt

0_
(s=o0 + jo: acomplex variable)

Inverse Laplace Transform of F (s):
1 o+ joo
L FEGs)] = F (s)e®'ds
. | Elo)
esafesl)

_ £ (t)u(t) whereu(t):{o’ t<0
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Test Signals Commonly Used In \
Control Systems

Input Function Description Sketch Use
Impulse 50 8(f) = mfor0— < <0+ 0 Mm‘ response .
Iwa(::’“l"’" ‘ e Ref: N. S. Nise:
" 5 Control Systems Engineering,
T th i
Step ) m}:;g::g 9 Tt rsponse L S Wlley, 2004
Ramp tu(r) ru(r) = ;} fglrs;:m(:e e Steady-state error
Parabola %r’u(t} ;:’um = —;rzforrz 0 fo Steady-state eror
= 0 elsewhere
Maodeling
Steady-state error
K r e /
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Example - 1
] :je‘Stt”dt (by definition)
0
Let v=st = dv=sdt
]O V(vjn dv
=0 — e
S) S
n

je‘vv dv =—

n+1 n+1

—nl(bylndUCUOn)
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Example - 2

L(e')= Te‘“etdt (by definition)
0

= T —(s—l)td
! e gt

. e—(s—l)t . 1 .
- P
1
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/ ltem no.

f(t) F(s) \
Laplace
1. o(1) 1
Transform 1
2. —
() -
|
3. tu(t) —
: e s
Ref: N. S. Nise:
Control Systems Engineering, n!
4th Ed., Wiley, 2004 4. "u(t) prES|
5 e "u(r) :
' S+a
. w
0. sin wtu(t) T o2
7 cos wtu(t) >
\ ' §2 + wz/
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Laplace
Transform

Ref: N. S. Nise:

Control Systems Engineering,

4t Ed., Wiley, 2004

ltem no. Theorem Name
1. L] = F(s) = J (e Sdt Definition
0_
2. Fkf(1)] = kF(s) Linearity theorem
3. FLA) + (0] = Fr(s) + Fa(s) Linearity theorem
4. Lle”Yf(1)] = F(s + a) Frequency shift theorem
5. Lft—-1] = e *TFs) Time shift theorem
6. L[ flat)] = éF (%) Scaling theorem
df . -
7. < = = sF(s) — f(0—) Differentiation theorem
| 2f ) : . -
8. % o7 = 5°F(s) — sf(0—) — f(0—) Differentiation theorem
'amf n Z n—k pk—1 : s
0. & o = s"F(s)— > s" *f*"1(0—) Differentiation theorem
L k=1
[t
10. & J f(1) dr} = @ Integration theorem
0_
11. f(®) = lin’(l) sF(s) Final value theorem'
5=
12. f(0+) = lim sF{(s) Initial value theorem?

! For this theorem to yield correct finite results, all roots of the denominator of F(s) must have
negative real parts and no more than one can be at the origin.
2 For this theorem to be valid, f(#) must be continuous or have a step discontinuity at ¢ = 0 (i.e.,
no impulses or their derivatives at t = 0).
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Result : L[e‘atf (t)] =F(s+a)

t g g 110

0

L[e‘at f (t)}

N\

Let S

L{e™f(t)]

|
)
(o
—h

(t)dt

|l

B et e oon Wo e U p M o e
_I_
QD

(S)  (by definition)

=F(s+a)
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Examples
2

2 2

ST+ 2
2 2

Hence L(e™sin2t)= -
(s+3)"+2* " +6s+13

(1) We know: L(sin2t)=

(2) We know: L(cos2t)=

glinnoe

Hence L(e‘?’tcoszt): s+3 _ s+43

(- 3 2 G bl
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Result : |_|:t”f (t)} = (-1)

jest[tf (t)]dt
= L[tf )|
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Result : L[t”f (t)} _

(-1)

 d"F(s)

ds”

Hence L[t f(t)|=(-1) dngS)
similarly L[t f (t)] = (-1’ dzdzgs)
In general L[tn f (t)] —(-1)" dn;gs)
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Result : L_df (t)_ — sF (s)— f (O)

]

L t)Olt
dt

I
O'—o8

[ (O] -[(9)e 1 ¢

:[0— f (O)]+sje‘“f (t)dt

F(s)
=sF(s)- f(0)
—_
=0(Typically)
Hence, multiplication by s Is a derivative operator!
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Generalization

id i)

dt?

— L

d

df (t)

dt

(

dt

J

~s[sF(5)- 1 (0)]- £(0)

=s’F(s)-s f(0)-f'(0)

=s|s’F(s)-s f (0)- f'(0) |- £"(0)

=s’F (s)—s® f(0)-s f'(0)- f"(0)
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Result: |L j'f(f)df _TF

Let g(t)= Jt'f(r)dr

Then g(0)

)=LLf(t)]=L[g'(t)]=sL g(t ]9
Hence Lﬁf(r)dr}zéF(s)

. S
l.e. Division by s Is an integral operator!
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Block Diagram Representation

i

[nput
()

R(s)

Input Output
——  »{ System |———»
r(1) (1)

Subsystem |—#| Subsystem [ Subsystem

(bus™ + by 18"+ -+ by)

Output
c(?)

C(s)

(QHSR"' an—lsn_l S et GO)
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Transfer Function Representation

Any physical system that can be represented by a
linear, time-invariant constant coefficient differential

equation can be modeled as a Transfer function

d"c(t) d n‘1c(t)
a + a + + a.c(t
Ead Ll e
d"r(t) d’“‘lr(t)
=3 +b + + b, r(t
el Rl =l [

c(t): the output r(t) :the Input
a;'s and b, 's are constants
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Transfer Function Representation
Taking Laplace Transform
as'"C(s)+a_,s"'C(s)+:-

.-+ a,C(s) +initial condition terms

= b s"R(s)+b__.s""R(S)+---
---+b,R(s)+ Initial condition terms

Assume all initial conditions as zero (linear system)

Then the ratio

m m-1

T(s)— C(s) _ bs"+b .S 1 +---+D,

R(s) as'+a s +---+a,
Is called the TRANSFER FUNCTION
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System Block Diagram

R(s) (b,,s™+b, 15" 1+ ..+ by) C(s)

((} e a”_lgn—l T aO)

n*

Definitions:
Roots of numerator: ZERQOS

Roots of denominator: POLES
m<n: Proper Transfer Function
m<n: Strictly Proper Transfer Function
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/Example =1

Simple First Order System
(R-L Circuit)

A
v(?) %} % L
i(%) :

di(t) :
v(t) =L + RI(t
(t) = (t)
laplace transform

\ eyl pole=-R/L
V(s) Ls+R

_
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/Example — 2: (Second-order system) \
Transfer Function Modeling of Car
Suspension System

X, =Vertical motion of
the body

Center of mass
A

\1- Auto body

. L "
%L] LE X,= motion of the bgdy
o — at the point P /
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Car Suspension System

m¥, +b(X, —%)+k(x,—x)=0
mX, + bX, + kx, = bX. + kx.

Taking Laplace Transform

(ms® + bs + k)X, (s) = (bs + k) X, (s)
Hence

T(s)—XO(S)— (bs + k)
() (mstibs ik
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System Response: R-L Circuit

di(t) : R
Vith) o=zl RI(t
(®) i NV
laplace transform
v(t) (+ )
| (s) i 1 r <> i(7) .
V(s) Ls+R

Pole location: — R/L

Let L=1H R = 1Q and v(t) =1V (unit step)
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System Response: R-L Circuit

'(5): 1 . pole = -2 V(s)=£; pole =0
V() s+2 S
(s) = ——
s(s+ 2)
Partial fraction expansion
I(s)=A+ 2 A= - B:£
S e Sueade i S
Taking Inverse Laplace Transform
: 1 1
i(t) = e e
(1) 5 >
- —_
forced response natural response
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System Response: R-L Circuit

Total response = Forced response +

N
due to input

N atural response

ey
due to energy dissipation

A Pole of the input function generates the form of
the forced response

A Pole of the system transfer function generates
the form of the natural response

The zeros and poles together generate the exact
amplitudes for both forced and natural responses
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System Response: R-L Circuit

A system Is stable if the natural response
approaches zero as time approaches infinity.

This demands e-@tform in the natural
response that means all the poles should lie
In the left half of the s-plane

jo
Pole at —o generates A

S . —ot
response Ke s-plane

o

—
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First Order Systems

\

s-plane

G(s)
R(s) C(s)
e X

r=(1/a): Time constant of the system

.
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Unit Step Response of
First-Order System

Output response for a unit step input
el 1= for t>0

The output will reach its final value as t — o.
Initial speed of response:

E_(etlrj _1
at 7 G
t=0
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Unit Step Response of a
First-Order System

=

.

]
4 ( i r cfty=1— 07 T =7
A=1 't'/
!
(.632 ‘ -
B BE o =
4 ) 4 5
e =] o =
= S = =
t S S
0 T 2T 3T 47T 3T I

Settling time: T, =4T =4¢
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Second-Order System
(R-L-C Circuit)

Ny ¢ = damping ratio

. w,=un damped
pm(? ) ¢~ npatural frequency
i(1)

Complex poles

I , 2
V(s) I Ve (s) ) oy
’ R 1 > R(s) ¢+ 2w,s + fﬂi
st t—
L LC
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Unit Step Response
Second-Order System

=

—Cw,t
= o Ponoiinmnino oo
c(t)=1- e cos(w,t—¢), where @, =w,\1-4*, ¢=tan ( - 52]
c(?)
F'y
50 L Undamped §=0
1.8
1.6
1:: damped 0<€<1
10 [ oo 4
0.8 -
0.6
04 Overdamped §>1
0.2
KO O.IS 1I 115 2 2.I5 :; 3.IS 4I|- ! /
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Transient Response
Specifications

| Fort = t, fesponse
—— remaing within this strip,
M,,T
| }-

' (105
N e,
\ 4 7 = 0
|
i
|

These points are specified.

0.5 t---- :
|
[

._ _.____
k- R - — -

Jug

Y
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Transient response specifications of
an Under-damped system

i

Rise time Trzﬂ_’g, Peak time T =
a)d a)d

where ,thanlia)“I ) W=l

R
Maximum over shoot M ) = e{ /Jl‘?}

Settling time T, = i (2% criterion)
co,
3 S
= —— (5% criterion)
SO,

_
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Second-Order Systems:
Pole Locations and Step Responses

=

- = ,—7.854r1 _
O e
s-plane
. Over damped
—7.854 —1.146 e =
o 1 2 3 4 5 !
c(n) c(r)—1-e (cosV 87 +‘g siny 87)
e 1a% =1 1.06e " cos( 8z 19.47")
plane 12|
X |8 ol
— o ool Under damped
x |78 o3
4
Jjo
plan 73
(o3
s Undamped
4
jo ,
plan mgm
- Critically damped
o .
S e e S
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Second-order Response As A
Function Of Damping Ratio

o

g Poles Step response
Jjo c(r)
i s-plane
%Jﬂ-‘n
0 - (T
+ _jw ’
Undamped
Ja s-plane o)
|
X Sy, "v"lrl - ;2
0<g <1 -
—f:&:?,,
O t
X —jo, 1= &2 Underdamped
S ()
s-plane i
£=1 —X o
_gmu
t
Critically damped
Jjo (1)
—w,+w, \/&2—1 §
\ s-plane
£=1 e—3¢ - c
rC‘oﬂh ady, I'n"lgz —1

I
Overdamped /
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Under Damped System Pole Plot

o

ja
A

__________ - tjw,V1- 4’2 =] 0g

Wy, s-plane

X-————————- - —jo,V1- 2 =—jay,
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/Step Responses of Second Order \
Under Damped Systems with Pole

Movement
o)
Eavelope e s ENVEIOP SAMeE % Jeo
2 _ I _ with constant
o % movton real part
{ar)
()
ey e s YEQUENCY SAaMe B
S N with constant
° Imaginary part
X : motion

()

. With constant

Lo damping ratio
' (e}
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Effect of Adding a Pole

jow jw jw
Pi1 P P1
23 X s-plane 23 X s-plane X s-plane
a3 - O * - O - O
— *é‘wn — —dw, —gw,
X X X
P2 P2 P2
Case 1 Case 11 Case 111
non dominant pole is near  far from the pair At Infinity
dominant second-order pair
111 Au(t) + e $P (B cos Wyt + Csin @ 41)
II ————— _
Case 1
0
IT De %1

Case 1

Residue of non dominant pole and its
response becomes zero as the non dominant
pole approaches infinity — Time
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Effect of Adding a Zero

Zeros and Poles together dictate the
exact response (including magnitude)

Zeros mainly effect the residues (i.e. the
constants in the numerator in the partial
fraction expansion)

Closer the zero Is to the dominant poles,
the greater is its effect on the transient
response
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Effect of Adding a Zero: Analysis

Let C(s): Response of a system with unity in the numerator.
Then by adding a zero, the Laplace transform of the response
of the new system will be (a+s)C(s)=aC(s)+sC(s)

aC(s): A scaled version of the original response

s C(s): The derivative of the original response

Thus, if a i1s small (in the LH plane), the derivative term
IS predominant. Hence, more overshooting is expected.
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Effect of Adding a Zero for Small
Values of a in the Left-half s-plane

i

\

A
1.6
For small values of ‘a’, one
1.4 + gets more overshooting
1.2
- 1.0 |
R
TE" 0.8 |- zero at —3
=) zero at —5
< 0.6 zero at —10
0.4 no Zero
0.2

0) 2.0 4.0 6.0
Time (seconds)

| | | -—
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Effect of Adding a Zero in RHS
of s-plane

(a—s)C(s)=aC(s)-sC(s), a>0
In this case the scaled response and derivative
terms oppose each other!

Thus, If the derivative term is large, then the
system response will initially follow the derivative
"In the opposite direction" of the scaled response!
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/Effect of Adding a Zero In the \
Right Half s-plane

4 Note: Tail-controlled

1.5 The system is called aerospace vehicles
non-minimum phase are typical examples
10 F for non-minimum
- phase systems

0
1.0 2.0 3.0 4.0 5.0 6.0
Time (seconds)
-05
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