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Matrix Transformations

Question:

Can a matrix be transformed into a “simplified”
form, without losing its properties?

Answer:
Yes!

Options:
Similarity transformation
Equivalence transformation
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Similarity Transformation

Definition: IfA_ and B are nonsingular matrices and P is
a non-singular matrix such that B = P AP, then
A and B are "similar".

Simplest forms possible:
Diagonal form
(if there are n linearly independent eigenvectors)

Jordan form

(if the number of linearly independent eigenvectors are
less then n)
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Similarity Transformation

Steps for finding P
Find the eigenvalues of A,

Find n linearly independent eigenvectors Vv,
(include generalized eigenvectors, if necessary)

Construct the P matrix by putting the
eigenvectors and generalized vectors as

column vectors
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Similarity Transformation:
Some useful results
If A= A", then 3 an orthogonal matrix P (i.e. PP' =P'P =1),
whose columns are normalized eigenvectors of A, such that
B=P'AP =diag(4,4,,....4,)
where A4,,4,,..., 4 are eigenvalues of A.
A Is similar to a diagonal matrix if and only if A has n linearly

Independent eigenvectors.
If A has n distinct eigenvalues, then A has n linearly independent
eigenvectors, and hence, it Is similar to a diagonal matrix
consisting of its eigenvalues in the diagonal elements.
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Similarity Transformation

Having n distinct eigenvalues is only a sufficient
condition for A to be similar to a diagonal matrix.

The necessary condition is to have n linearly
Independent eigenvectors. Having repeated
eigenvalues does not guarantee that the
eigenvectors are linearly independent

(e.g. identity matrix).

If the matrix is of full rank, however, it guarantees
that it has n linearly independent eigenvectors.
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Equivalence Transformation

For a mx n (hon-square) matrix A, a transformation of the form
B = PAQ, where P_ _and Q_  are non-singular matrices is called an
"equivalence transformation".

If A hasrankr, then 3 P,Q:

PA Ir,r Or,n—r
Q 7 O O mxn

m-r,r m-r,n—r

where | isthe r xr identity matrix.
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Singular Value Decomposition
(SVD)

Singular Value Decomposition (SVD) is a
special class of equivalence transformation,
where P and Q matrices are restricted to be
orthogonal.

Under an orthogonal equivalence transformation
(l.e. In SVD), we can achieve a diagonal matrix.

Under an orthogonal similarity transformation,
however, we can achieve only a triangular
matrix (Schur’s theorem).
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Singular Values

o, é\/ﬂ(ATA) . if Ais real

S \//I(A*A) . if Ais complex

Both A" A and A" A are positive semidefinite, and hence, their
eigenvalues are always non-negative.

For singular value computation, only positive square roots need
to be found out.
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Singular Values

For any real (complex) A of rank r, 3 orthogonal (unitary)
matrices P and Q__

nxn

o, 0 O

AoPhE s
Q mxn O o Gr O

o 9 0

where o,,...,o, are singular values of A.
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How to find matrices Pand Q ?

Let 4....4 and X,,..., X, be the eigenvalues
and corresponding “orthonormal
eigenvectors” of A'A

Construct o, (A)=.4, (i=1...,n)

Order o; 's such that
g -0 -1
=9 I+l N
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How to find matrices Pand Q ?

1 .
Construct Y, =—(AX;), i=1..r

O;

Extend Y,,....Y. to an orthonormal basis

N
Then _ .
Y Y - X X, |
o

0 e
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Example

1 0
10

A

-1
1

Aips(ATA)=4,0,0

1 .
X, =——

ﬁ__l_
(for A=4)

X2

AlA=

CbE A= (i A=0
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Example

oy _\/Z_ 2]
o, |=| 4, |=| 0| (Note: The values are ordered)

E0s \/Z 0

1 0 -1 1
lei(Axl)Zi i 0 :i
o, 201t 0 17 J2| -1
Next, find Y,=[a b]' such that Y, and Y, will be orthonormal
e s v a0 and e v e o e
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Example

1
Solution: a=b=1/+2. Hence, Y, :%{ }

a1
= J_—z{—l 1}

2 : B b
e S, 1
Q: 1 2 3 e O \/E O
Lk
= ﬁ—l Qi
e R
e e ey
B e
: e e e e ] Jo0nt
Verify: PO =—= el \/5 0 |= =
) - JEL 1}{0 0 OLE {—1 0 J
e e
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Summary of Transformations

Matrix (A)

A 4 \ 4

Square Non-square

| * Semi-diagonal form (I, in
Y the main diagonal)

A 4

Symmetric/ * Singular value Decomposition
Non-symmetric form (P and Q are orthogonal)

* Triangular form by |
orthogonal similarity v v

Non-symmetric

Transformation Has n-independent Doesn’t have n-independent
(Schur’s Theorem) eigenvectors eigenvectors
* Diagonal form by Diagonal form by Jordan form by similarity
orthogonal equivalence  similarity Transformation 1 ranformation
Transformation
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Vector/Matrix Calculus:
Definitions

Ko o
X()E[% ) %@ - % @]

j‘X(r)dré_‘in(r)dr sz(r)dr jxn(r)dr_
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Vector/Matrix Calculus:

A(t)

A

&, (t)

[a,0dr - [a,(@)de

Definitions
a, (1) 8 (0
A= 5
_aml (t) a'mn (t)_
_t[ A(r)dr =

jaml(f)df jamn (r)dr

el
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Vector/Matrix Calculus:
Some Useful Results

gt (A(t) + B(t)) = A(t) + B(t)
gt (A(t)B(t)) = A(t)B(t) + A(t)B(t)
d dA(t)

Mﬁ»—Am A (1)

dt dt

ADVANCED CONTROL SYSTEM DESIGN 19
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



Vector/Matrix Calculus:
Definitions

If f(X)eR, then (af /oX)2[of fox, - of Iox,]
is called the "gradient” of f (X).

i g ] R e
ﬂﬁ_ﬁfllzaxl 6f1/:6xn_
ot of fox, -+ oOf 10X,

is called the "Jacobian matrix" of f (X ) with respect to X.
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Vector/Matrix Calculus:
Definitions

If f(X)eR, then

on o o
Oxe Ok OX,0X_
: ok o f
ol =
XE OX,0X, OX,0X_
.
| OX, 0% OX,0X, gtz

is called the "Hessian matrix" of f (X )
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Vector/Matrix Calculus:
Derivative Rules

0 0

i SR Th) —
a—x(b X)_ax(x b)=b
0
—(AX)=A
0

a—X(XTAX)z(AJrAT)X

If A=A, 2 (1XTAXJ:AX

\ oX \ 2
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Vector/Matrix Calculus:
Derivative Rules

ai(f (X)g(X))= B‘J g(x){s—)gj f(X)

Corollary :

o g 0 of
2(craon) 2] c. Zroae)=[2]c

of

2 (1()Qg(X)- [@X} Qg(X)+ L}X}Q f(X)
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Vector/Matrix Calculus:
Derivative Rules

If G(X)eR"™™,
0

a_X(ca(X)u):[

_Gl GZ
.

where G =

oG,
oX

e Rk

o

G

If f(X)eR, g(X)eR"™,

0
a—X[f(X)g(X) U|=

:

gy

oX

m

"

0G,
oX

BE=s| 4k

.

X eR",

i

o
oX
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Vector/Matrix Calculus:
Chain Rules

If F(f(X))eR, f(X)eR, XeR’
EREE

ax nx1 ax nx1 af 1x1

If F(f(X))eR, f(X)eR", XeR"
= AELE

oXaas e ol i

If F(f(X))eR®, f(X)eR", XeR"
e

ol o oL
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