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Matrix Transformations

Question:
Can a matrix be transformed into a “simplified”
form, without losing its properties?

Answer:
Yes!

Options:
• Similarity transformation
• Equivalence transformation
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Similarity Transformation

Definition:

Simplest forms possible:
• Diagonal form 

(if there are n linearly independent eigenvectors)
• Jordan form

(if the number of linearly independent eigenvectors are 
less then n)

1

If  and  are nonsingular matrices and  is
a non-singular matrix such that , then

 and  are "similar".

n n n n n nA B P
B P AP

A B

× × ×

−=
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Similarity Transformation

Steps for finding P

Find the eigenvalues of

Find n linearly independent eigenvectors 
(include generalized eigenvectors, if necessary)

Construct the P matrix by putting the 
eigenvectors and generalized vectors as 
column vectors

n nA ×

nV
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Similarity Transformation: 
Some useful results

( )1 2

1 2

If , then  an orthogonal matrix  ( . . ),
whose columns are normalized eigenvectors of ,  such that

, , ,
where , , ,  are eigenvalues of .

T T T

T
n

n

A A P i e PP P P I
A

B P AP diag
A

λ λ λ
λ λ λ

= ∃ = =

= = …
…

 is similar to a diagonal matrix  has  linearly 
independent eigenvectors.
A A nif  and only if

If  has n distinct eigenvalues, then  has  linearly independent 
eigenvectors, and hence, it is similar to a diagonal matrix
consisting of its eigenvalues in the diagonal elements.

A A n
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Having n distinct eigenvalues is only a sufficient 
condition for A to be similar to a diagonal matrix. 

The necessary condition is to have n linearly 
independent eigenvectors. Having repeated 
eigenvalues does not guarantee that the 
eigenvectors are linearly independent 
(e.g. identity matrix). 

If the matrix is of full rank, however, it guarantees 
that it has n linearly independent eigenvectors.

Similarity Transformation
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Equivalence Transformation

, ,

For a (non-square) matrix , a transformation of the form
, where  and  are non-singular matrices is called an

"equivalence transformation".

If  has rank , then  , :  
0

m m n n

m n

r r r n r

m n A
B PAQ P Q

A r P Q
I

PAQ

× ×

×

−

×
=

∃

=
, ,

,

0 0

where  is the  identity matrix.
m r r m r n r m n

r rI r r
− − − ×

⎡ ⎤
⎢ ⎥
⎣ ⎦

×
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Singular Value Decomposition 
(SVD)

Singular Value Decomposition (SVD) is a 
special class of equivalence transformation, 
where P and Q matrices are restricted to be 
orthogonal.
Under an orthogonal equivalence transformation 
(i.e. in SVD), we can achieve a diagonal matrix.
Under an orthogonal similarity transformation, 
however, we can achieve only a triangular 
matrix (Schur’s theorem).
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Singular Values

( )
( )*

, if  is real

, if  is complex

T
A A A A

A A A

σ λ

λ

�

�

*Both  and  are positive semidefinite, and hence, their
eigenvalues are always non-negative.

For singular value computation, only positive square roots need
to be found out.

TA A A A
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Singular Values

1

1

For any real (complex)  of rank ,  orthogonal (unitary)
matrices  and :  

0 0

,
0 0
0 0 0

where , ,  are singular values of .

m n

m m n n

m n
r

r

A r
P Q

A PDQ D

A

σ

σ

σ σ

×

× ×

×

∃

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# % # #
"
"

…
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How to find matrices P and Q ?

Let and be the eigenvalues 
and corresponding “orthonormal 
eigenvectors” of

Construct

Order such that

1, , nλ λ… 1, , nX X…

TA A

( ) ( ), 1, ,i iA i nσ λ= = …

'i sσ
0, 1, ,
0, 1, ,

i

i

i r
i r n

σ
σ

> =

= = +

…
…
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Construct 

Extend to an orthonormal basis

Then

How to find matrices P and Q ?

1, , rY Y…

1 1, , , , ,r r mY Y Y Y+… …

( )1 , 1, ,i i
i

Y AX i r
σ

= = …

1 mY Y
P ⎡ ⎤
= ⎢ ⎥↓ ↓ ↓⎣ ⎦

" 1
T

nX X
Q ⎡ ⎤
= ⎢ ⎥↓ ↓ ↓⎣ ⎦

"
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Example

( )

( ) ( ) ( )

1,2,3

1 2 3

2 0 2
1 0 1

, 0 0 0
1 0 1

2 0 2

4,0,0

1 0 1
1 10 , 1 , 0
2 21 0 1

4 0 0

T

T

A A A

A A

X X X

for for for

λ

λ λ λ

−⎡ ⎤
−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥−⎣ ⎦

=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =
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Example

( )

( )

[ ]

11

2 2

3 3

1 1
1

T
2 1 2

1 2

2
0 Note: The values are ordered
0

1
1 0 1 11 1 1 10
1 0 1 12 2 21

Next, find =  such that  and  will be orthonormal

i.e. ,

Y AX

Y a b Y Y

Y Y Y

λσ
σ λ
σ λ

σ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

−⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

= 2 2
1 2 2 2 2 20    and   , 1T TY a b Y Y Y Y a b= − = = = + =
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Example
2

1 2

1 2 3

1

11Solution:    1/ 2.        Hence,  
12

1 11
1 12

1 0 1
1 0 2 0
2 1 0 1

0 0 2 0 0
0 0 0 0 0 0

1 0 1
1 1 2 0 01 1: 0 2 0
1 1 0 0 02 2 1 0 1

T

a b Y

Y Y
P

X X X
Q

D

Verify PDQ

σ

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥↓ ↓ −⎣ ⎦ ⎣ ⎦
−⎡ ⎤

⎢ ⎥⎡ ⎤
= = ⎢ ⎥⎢ ⎥↓ ↓ ↓⎣ ⎦ ⎢ ⎥− −⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−⎡
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ − −

1 0 1
1 0 1

A

⎤
−⎢ ⎥ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥
⎣ ⎦
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Summary of Transformations

Non-square

Matrix (A)

Square

Non-symmetric Symmetric/
Non-symmetric

Has n-independent 
eigenvectors 

Doesn’t have n-independent
eigenvectors

* Triangular form by 
orthogonal similarity    
Transformation
(Schur’s Theorem)

* Diagonal form by
orthogonal equivalence
Transformation 

* Semi-diagonal form  (Ir,r in
the main diagonal)

* Singular value Decomposition 
form (P and Q are orthogonal)

Diagonal form by 
similarity Transformation

Jordan form by similarity 
Tranformation
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Vector/Matrix Calculus:
Definitions

( ) [ ]1 2( ) ( ) ( ) T

nX t x t x t x t� "

( ) 1 2
0 0 0 0

( ) ( ) ( )
Tt t t t

nX d x d x d x dτ τ τ τ τ τ τ τ
⎡ ⎤
⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ∫� "

( ) [ ]1 2( ) ( ) ( ) T

nX t x t x t x t� � � �� "
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Vector/Matrix Calculus:
Definitions

( )
11 1

1

( ) ( )

( ) ( )

n

m mn

a t a t
A t

a t a t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
( )

11 1

1

( ) ( )

( ) ( )

n

m mn

a t a t
A t

a t a t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� �"
� � # % #

� �"

11 1
0 0

0

1
0 0

( ) ( )

( )

( ) ( )

t t

n

t

t t

m mn

a d a d

A d

a d a d

τ τ τ τ

τ τ

τ τ τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
∫

∫ ∫

"

� # % #

"
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Vector/Matrix Calculus:
Some Useful Results

( )( ) ( ) ( ) ( )d A t B t A t B t
dt

+ = +� �

( )( ) ( ) ( ) ( ) ( ) ( )d A t B t A t B t A t B t
dt

= +� �

( )1 1 1( )( ) ( ) ( )d dA tA t A t A t
dt dt

− − −= −
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Vector/Matrix Calculus:
Definitions

( ) ( ) [ ]
( )

1If  ,  then  / / /

is called the "gradient" of  .

T

nf X f X f x f x

f X

∈ ∂ ∂ ∂ ∂ ∂ ∂� "R

( ) ( ) ( )

( )

1

1 1 1

1

If  ,  then  

/ /

/ /

is called the "Jacobian matrix" of   with respect to .

T m
m

n

m m n

f X f X f X

f x f x
f
X

f x f x

f X X

⎡ ⎤ ∈⎣ ⎦
∂ ∂ ∂ ∂⎡ ⎤

∂ ⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

� "

"
� # % #

"

R
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Vector/Matrix Calculus:
Definitions

( )

( )

2 2 2

2
1 1 2 1

2 2
2

2 1 22

2 2 2

2
1 2

If  ,  then  

is called the "Hessian matrix" of  .

n

n

n n n

f X

f f f
x x x x x
f f

f x x x x
X

f f f
x x x x x

f X

∈

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂
∂ ∂ ∂ ∂⎢ ⎥∂ ⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

"

%
�

# % #

"

R
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Vector/Matrix Calculus:
Derivative Rules

( ) ( )T Tb X X b b
X X
∂ ∂

= =
∂ ∂

( )AX A
X
∂

=
∂

( ) ( )
1If  ,
2

T T

T T

X AX A A X
X

A A X AX AX
X

∂
= +

∂
∂ ⎛ ⎞= =⎜ ⎟∂ ⎝ ⎠
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Vector/Matrix Calculus:
Derivative Rules

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

:

( ) , ( )

( ) ( )

T T
T

T T
T T

T T
T

f gf X g X g X f X
X X X

g fC g X C f X C C
X X X X

f gf X Q g X Q g X Q f X
X X X

∂ ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

Corollary
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Vector/Matrix Calculus:
Derivative Rules

( ) 1 2
1 2

If   ( ) , ,

( )

p m n m

m
m

G X X U
GG GG X U u u u

X X X X

×∈ ∈ ∈

∂∂ ∂∂ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + + ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦
"

R R R

1 2 mG G G
G

⎡ ⎤
⎢ ⎥↓ ↓ ↓⎣ ⎦

"
�where

[ ]

1If   ( ) , ( ) , ,

( ) ( )

m n mf X g X X U

g ff X g X U f g U
X X X

×∈ ∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

R R R R
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Vector/Matrix Calculus:
Chain Rules

( )

1 1 1 1

If   ( ) , ( ) , n

n n

F f X f X X

F f F
X X f× × ×

∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R

( )

1 1

If   ( ) , ( ) ,m n

T

n n m m

F f X f X X

F f F
X X f× × ×

∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R

( )If   ( ) , ( ) ,p m n

T

p n m np m

F f X f X X

F F f
X f X× ××

∈ ∈ ∈

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

R R R
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