
Lecture – 20

Controllability and Observability of Linear 
Time Invariant Systems

Dr. Radhakant Padhi
Asst. Professor

Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore



Evaluation of Matrix Exponential  eAt

Dr. Radhakant Padhi
Asst. Professor

Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

3

Method – 1: Power-series

This method is useful and accurate only if the 
series truncates naturally. Otherwise, series 
truncation introduces approximation error.

Direct computation of eAt as power series is 
computationally inefficient as well.

2 2 3 3

2! 3!
At A t A te I At= + + + +
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Method – 2: 
Using Laplace Transform

This method results in closed form expressions for 
eAt, can be quite useful for small matrices.

Numerical algorithms exist to evaluate

. However, its inverse still need to be found.

Can be quite cumbersome for large matrices.

( ) 11Ate L sI A −− ⎡ ⎤= −⎣ ⎦

( ) 1sI A −−
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Method – 3: 
Using Similarity Transform
(Provided the matrix can be diagonalizable)
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Method – 4: Sylvester’s Formula
Case – 1: Distinct Eigenvalues

eAt satisfies the following determinant equation:
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Method – 4: Sylvester’s Formula
Case – 1: Distinct Eigenvalues
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The coefficients , , ,  
can be determined from the following set
of equations:
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Method – 4: Sylvester’s Formula
Case – 2: Repeated Eigenvalues

eAt satisfies the following determinant equation:

( ) ( ) ( ) ( )2 1
0 1 2 1

At n
ne t I t A t A t Aα α α α −
−= + + + +

i.e.
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Eigenvalues:
, , , , , nλ λ λ λ λ
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Method – 4: Sylvester’s Formula
Case – 2: Repeated Eigenvalues
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Method – 4: Sylvester’s Formula
Example

( ) ( )
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To compute  using Sylvester's formula, we have
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Controllability
• A system is said to be controllable at time t0   if 

it is possible by means of an unconstrained 

control vector to transfer the system from any 

initial state to any other state in a finite 

interval of time

• Controllability depends upon the system matrix 

A and the control influence matrix B

0X
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Graphical Meaning

0X

fX

Must happen in finite time.
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Condition for Controllability:
(single input case)

System:

Solution:

Assuming
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Condition for Controllability:
(single input case)

( )
1

0
( ) Sylvester's formula
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This system should have a non-trivial solution for [ ]0 1 1
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nβ β β −



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

16

Controllability
1If the rank of  is ,

then the system is controllable.

n
BC B AB A B n−⎡ ⎤⎣ ⎦

Example:
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x
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⎦
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⎢
⎣

⎡
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( )

2 1 0 2 2 2
1 0 2 1 1 2

2  The system is controllable.

B

B

C

rank C

⎡ − ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

= ∴

Result:
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Output Controllability

1If the rank of  is ,

then the system is output controllable.

n
BC CB CAB CA B D p−⎡ ⎤⎣ ⎦

Result:

, ,n m p

X AX BU
Y CX DU

X U Y

= +
= +

∈ ∈ ∈R R R

Note:  The presence of  term in the output equation
           always helps to establish output controllability.

DU
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Observability
• A system is said to be observable at  time 

t0 if, with the system in state X(t0) ,it is 

possible to determine this state from the 

observation of the output over a finite 

interval of time

• Observability depends upon the system 

matrix A and the output matrix C
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Observability

( ) 1
If the rank of  is ,

then the system is observable.

nT T T T T
BO C A C A C n

−⎡ ⎤
⎢ ⎥⎣ ⎦

Example:

[ ]1 1 1

2 2 2

1 0 2
1 0

0 2 1
x x x

u y
x x x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( )

1 1 0 1 1 1
0 0 2 0 0 0

1 2  The system is NOT observable.

B

B

O

rank O

⎡ − ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

= ≠ ∴

Result:
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Controllability and Observability 
in Transfer Function Domain

The system is both controllable and 
observable if there is no Pole-Zero 
cancellation.

Note: The cancelled pole-zero pair 
suppresses part of the information about 
the system
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Principle of Duality
System S1:

System S2:

The principle of duality states that the system S1 is controllable if 
and only if system S2 is observable; and vice-versa!

Hence, the problem of observer design for a system is actually a
problem of control design for its dual system.

1

X AX BU
Y CX

= +
=

2

T T

T

Z A Z C V
Y B Z
= +

=

2 1

2 1

n

n
B

T T T T T T T
B

C B AB A B A B

O C A C A C A C
−

−⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

2 1

2 1

nT T T T T T T
B

n
B

C C A C A C A C

O B AB A B A B

−

−

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦
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Stabilizability and Detectability

Stabilizable system: Uncontrollable 
system in which uncontrollable part is 
stable

Detectable system: Unobservable 
system in which the unobservable 
subsystem is stable
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Example
Ref: B. Friedland, Control System Design, McGraw Hill, 1986

[ ]

1 1

2 2

3 3

4 4

System Dynamics

2 3 2 1 1
2 3 0 0 2
2 2 4 0 2
2 2 2 5 1

Output Equation

7 6 4 2

BXX A

C

x x
x x

u
x x
x x

y X

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

=
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( )
( ) ( ) ( )( )( )

( )( )( )( ) ( )
1

pole-zero cancellation

2 3 4 1
1 2 3 4 1

y s s s s
C sI A B

u s s s s s s
− + + +

= − = =
+ + + + +

Transfer Function:

Implication: What appears to be a fourth-order system, is
actually  a first-order system! Hence, there is 
either loss of controllability or observability
(or both). 

Question: Is this system stabilizable?

Example
Ref: B. Friedland, Control System Design, McGraw Hill, 1986
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( )
( ) ( )1

1

Define   . Then

Let  
4 3 2 1 1 0 0 0 1
3 3 2 1 0 2 0 0 0

,
2 2 2 1 0 0 3 0 1
1 1 1 1 0 0 0 4 0

X TX

X TX T AX Bu

X TAT X TB u

T TAT TB

−

−

=

= = +

= +

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇒ = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Example
Ref: B. Friedland, Control System Design, McGraw Hill, 1986
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11

2 12
1 2

33

44

1

2

3

4

2
,

3
4

Implications:

: Affected by the input; visible in the output
:  Unaffected by the input; visible in the output
: Affecte
:

x ux
xx

y CX CT X x x
x ux

xx

x
x
x
x

−

− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= = = = +
⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

d by the input; Invisible in the output
Unaffected by the input; Invisible in the output

Example
Ref: B. Friedland, Control System Design, McGraw Hill, 1986
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Block Diagram:
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Where do uncontrollable or 
unobservable systems arise?

Redundant state variables

Physically uncontrollable system

Too much symmetry
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