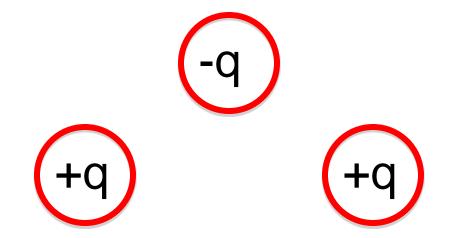
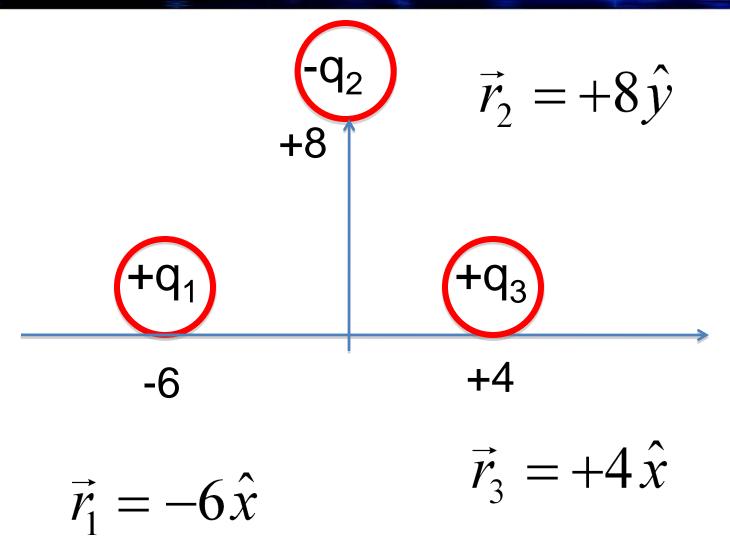


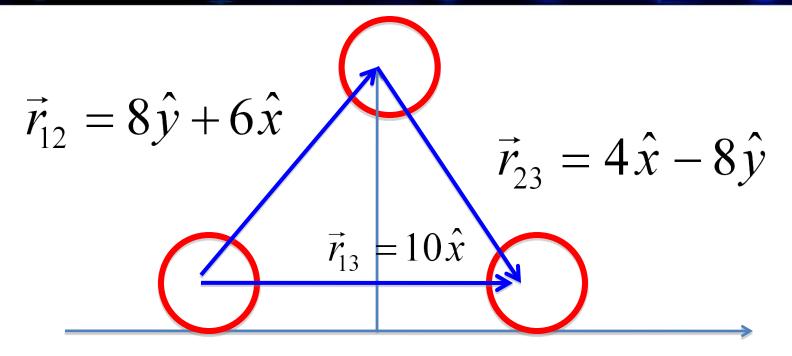
Vectors-2

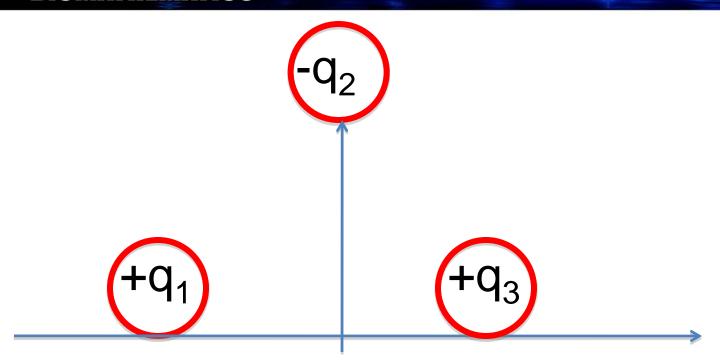
Three charges: total force



In which direction will the negative charge move?



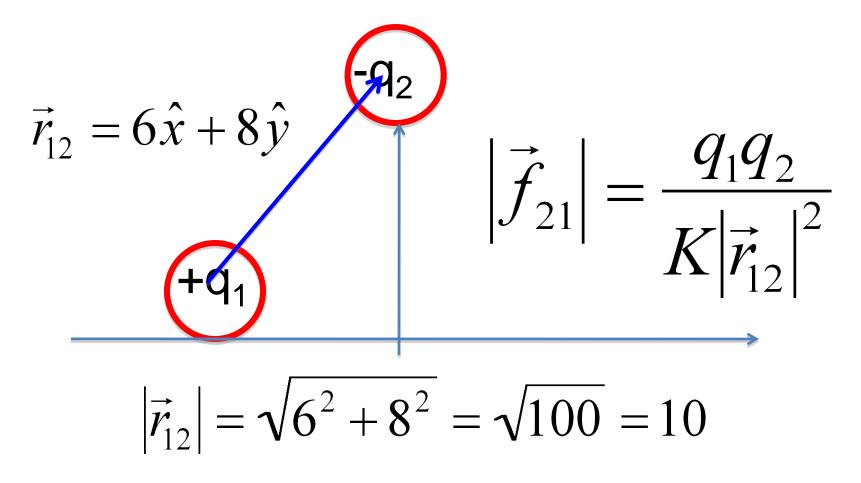




Force on the second charge?

$$\vec{f}_2 = \vec{f}_{21} + \vec{f}_{23}$$

Force on charge q₂ due to q₁



Magnitude of a vector

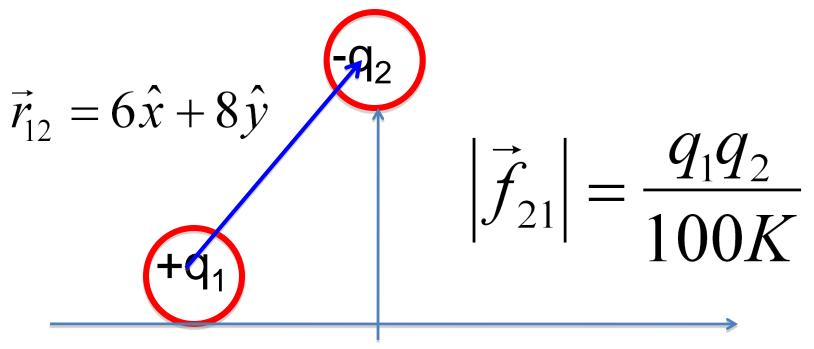
Consider a vector A

$$\vec{A} = a_1 \hat{x} + a_2 \hat{y} + a_3 \hat{z}$$

Magnitude of the vector = length of the vector

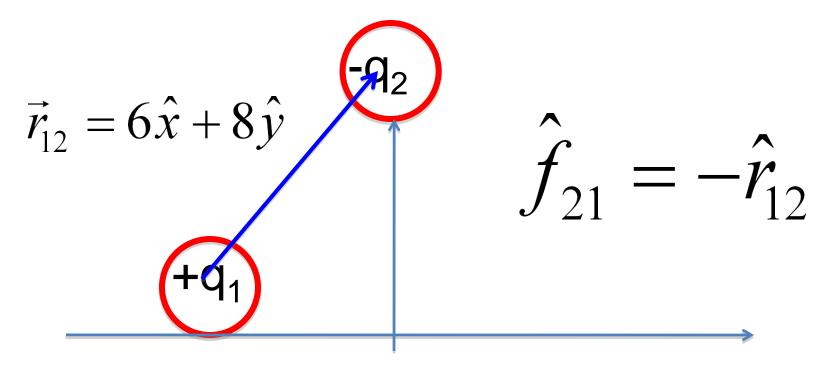
$$|\vec{A}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

What is the direction of the force?



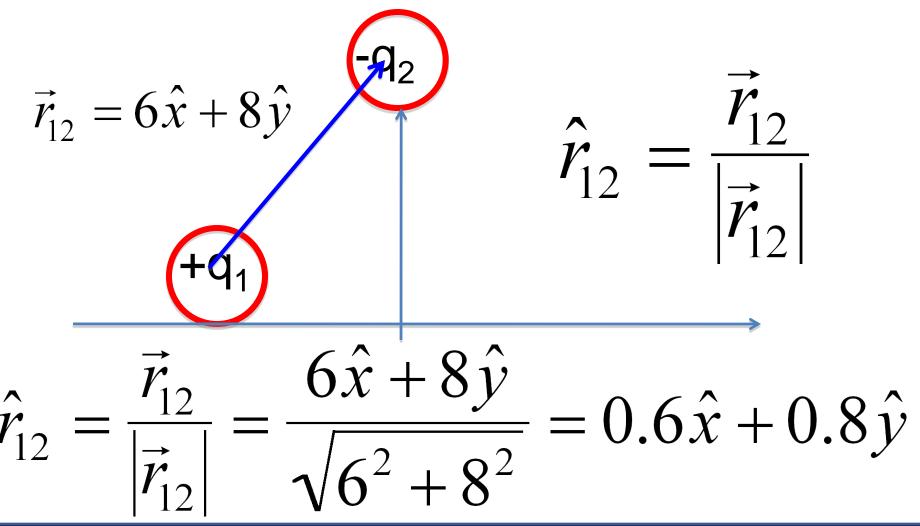
 q_2 will be attracted towards q_1 Direction is opposite to the direction of \vec{r}_{12}

Opposite to the direction of \vec{r}_{12}

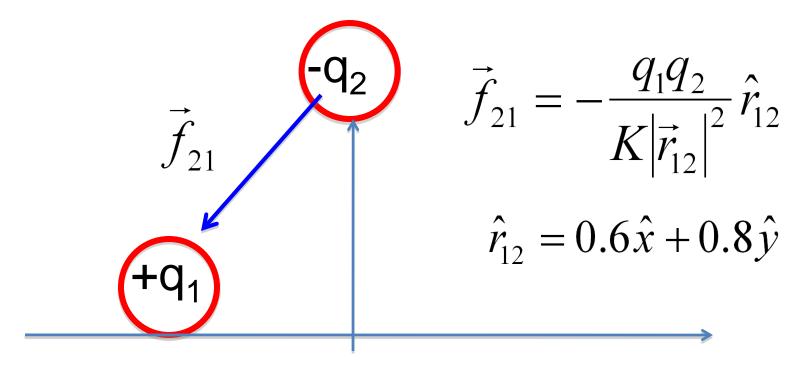


A unit vector represents direction

How do we calculate \hat{r}_{12} ?

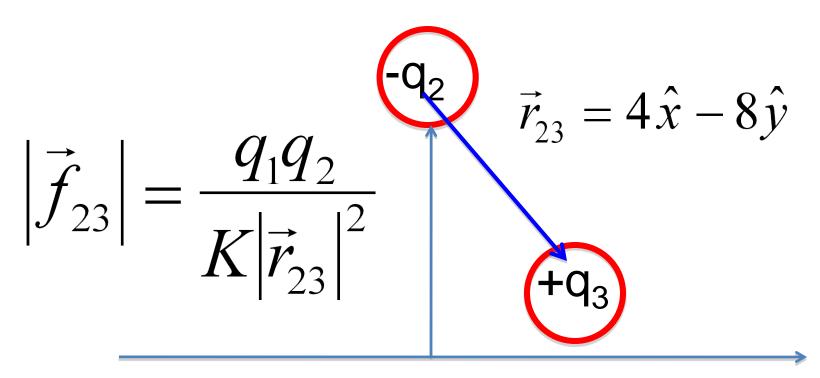


Force on charge q₂ due to q₁



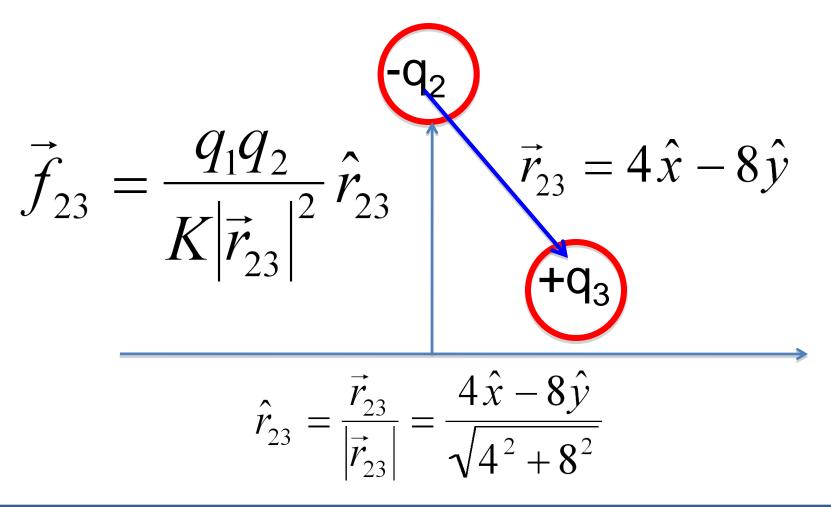
$$\vec{f}_{21} = -0.6 \frac{q_1 q_2}{100K} \hat{x} - 0.8 \frac{q_1 q_2}{100K} \hat{y}$$

Force on charge q₂ due to q₃



 q_2 will be attracted towards q_3 Direction is the same as direction of \vec{r}_{23}

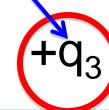
Force on charge q₂ due to q₃



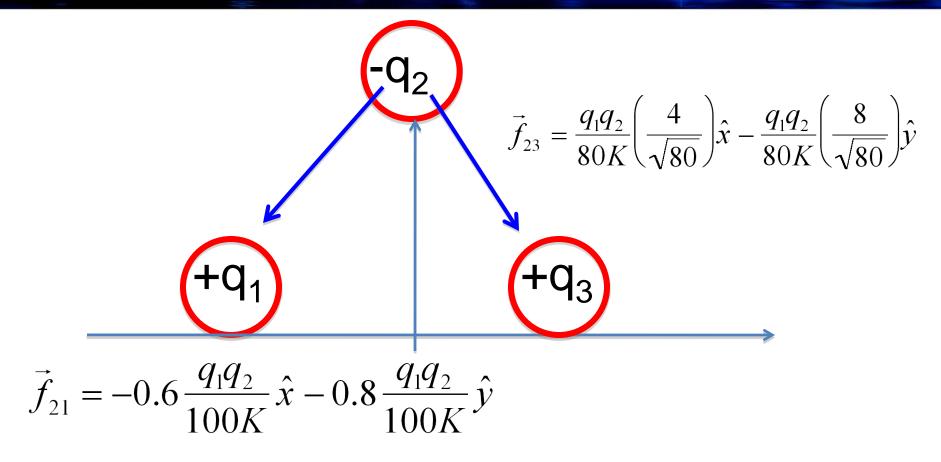
Force on charge q₂ due to q₃

$$\hat{r}_{23} = \frac{\vec{r}_{23}}{|\vec{r}_{23}|} = \frac{4\hat{x} - 8\hat{y}}{\sqrt{4^2 + 8^2}}$$

$$\vec{r}_{23} = 4\hat{x} - 8\hat{y}$$



$$\vec{f}_{23} = \frac{q_1 q_2}{80K} \left(\frac{4}{\sqrt{80}} \right) \hat{x} - \frac{q_1 q_2}{80K} \left(\frac{8}{\sqrt{80}} \right) \hat{y}$$



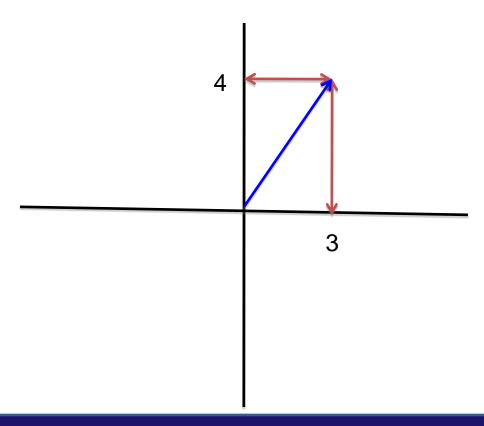
$$\vec{f}_2 = \vec{f}_{21} + \vec{f}_{23}$$

Summary

- Finding out resultant force
- Unit vector

- Magnitude of a vector
- Direction of a vector

We saw that two numbers specify a vector in 2D e.g. position of a particle.

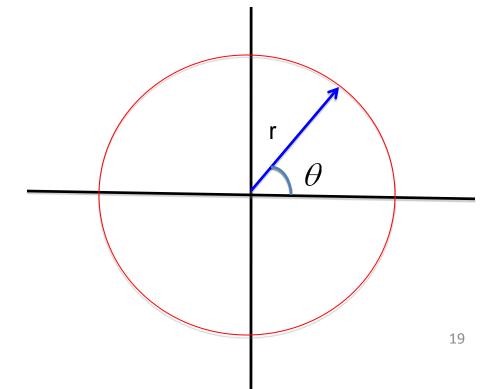


Plane polar co-ordinate

We can represent the same using a distance and an angle.

$$x = r \cos \theta$$

$$y = r \sin \theta$$



Addition of vectors

Vectors can be added by adding individual components. E.g.

$$\vec{A} = a_1 \hat{x} + a_2 \hat{y} + a_3 \hat{z}$$

$$\vec{B} = b_1 \hat{x} + b_2 \hat{y} + b_3 \hat{z}$$

$$\vec{C} = \vec{A} + \vec{B}$$

$$\vec{C} = (a_1 + b_1)\hat{x} + (a_2 + b_2)\hat{y} + (a_3 + b_3)\hat{z}$$

Subtraction of vectors

Vectors can be subtracted by subtracting their individual components. E.g.

$$\vec{A} = a_1 \hat{x} + a_2 \hat{y} + a_3 \hat{z}$$

$$\vec{B} = b_1 \hat{x} + b_2 \hat{y} + b_3 \hat{z}$$

$$\vec{C} = \vec{A} - \vec{B}$$

$$\vec{C} = (a_1 - b_1)\hat{x} + (a_2 - b_2)\hat{y} + (a_3 - b_3)\hat{z}$$

Dot product of vectors

$$\vec{f} = a_1 \hat{x} + a_2 \hat{y} + a_3 \hat{z}$$

$$\vec{x} = b_1 \hat{x} + b_2 \hat{y} + b_3 \hat{z}$$

$$C = \vec{f} \bullet \vec{x}$$

$$C = |\vec{f}| |\vec{x}| \cos \theta$$

$$C = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Summary

Addition of vectors

- Plan polar co-ordinates
- Dot product