LECTURES 23-29: Microbial Growth and Bioreactors

Problem 1: Consider the model of a constant —volume, non-ideally
mixed chemostate with sterile feed, consisting of following
equations, with initial condition being given by S=X=0 at t=0:
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where X and S are the average cell and substrate concentrations in
the chemostate, respectively, while X and S _ are the mixing-cup
cell and substrate concentrations in the chemostate respectively, S,
1s the inlet substrate concentration, t_. and t are the mixing time
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and residence time respectively, and u 1s the specific growth rate of
cells, given by
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Obtain the steady states of the above model given by equations (1-5)
and examine the stability of each steady-state.
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Solution: From equation (2)
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Using eqn.(10.2) in eqn.(1), we get
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Put eqn. (10.5) into given eqn.(3), so we get

D(S,-S
ds _ D(S, )—ﬂX (10.6)
dlt (1 N tmj
;
and
IleaXS + ILIZ (107)

H= 5
(KS +S+S]
KI



Now at S.S
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Case 1: 1f X #0 (Non-wash out case)
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Lets say a = (1 T n;_lx j (a>1)
therefore D= au
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from eqn.(10.7) and eqn.(10.8)

5+ 5. (D=t ) + (DK, ~a) =0 (109
I



> 4D

S (Ol —D)J_r\/(oz,umalX - D) —?(DKS —au?)
— 1

ST 2D

KI
(10.10)

(provided determinant >0)
and from eqn.(10.6) (at S.S)
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Case 2: Wash out state

Stability Analysis:

Case 1: D =oau



Jacobian matrix can be formed as
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Now
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Now by Routh-Hurwitz criteria
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Hence from eqn.(10.14)




Hence one of the root 1s
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Equation (10.13) 1s the condition for stability.

If S, satisfies above condition, 3,>0 also satisfied and the system
steady state would be stable.

Case 2: Wash-out state

Here D>oau & X =0 & S_ =0
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Hence this steady state 1s globally stable.



Problem 2:

The following prey-predator model 1s used to describe the predation
by an amoeba on a bacterium. Obtain analytically the steady states
of the model and examine their stability using linear stability
analysis. All symbols in the model have their usual meanings.
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For equation (1), (2) and (3), steady states are

£, (s)
}/S S

D(SO—SS)—

_Dnls +1Lls (S)nls o

—hy (D —H, (nls )) =0

from (12.3) n,, =0 or D=, (m, )
forn, =0, from (12.2)

—n,, (D — U, (S)) =0

(12.1)
(12.2)

(12.3)



n,=0
Therefore from eqn.(12.1)
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Putting in eqn.(12.1) we get
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Also from eqn. (12.2)
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So steady states are as follows:

Steady State 1:
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Steady State 2:
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Linear Stability Analysis:

Jacobian matrix can be formed as
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Thus for Steady State 1, (0,0,0), we have
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(D+1) =0 = A =-D
So as D 1s always >0, so A,<0
So Stable Steady State.
Now, for steady state 2, we have
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So for D>p .. and D<p .., this condition should be satistfied.

For Stability
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So condition —a,,.a,,>0 1s always satisfied
so steady state exist only if D<p,.,. and stable for D<p .. .
and conditionally stable for D>p .. only 1f
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