Advanced Mathematical techniques in Chemical Engineering

Module X : Solution of linear, homogeneous PDEs by separation of variables

Exercises

1. Consider the PDE $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$

Solve the above parabolic equation subject to the following conditions:
At $\mathrm{t}=0, \mathrm{u}=0$; at $\mathrm{x}=0, \mathrm{u}=1$ and at $\mathrm{x}=1, \frac{\partial u}{\partial x}=0$
2. Consider the PDE $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$

Solve the above parabolic equation subject to the following conditions:
At $\mathrm{t}=0, \mathrm{u}=1$; at $\mathrm{x}=0, \mathrm{u}=0$ and at $\mathrm{x}=1, \frac{\partial u}{\partial x}=5$
3. Consider the PDE $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$

Solve the above parabolic equation subject to the following conditions:
At $\mathrm{t}=0, \mathrm{u}=1$; at $\mathrm{x}=0, \mathrm{u}=1$ and at $\mathrm{x}=1, \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=0$; at $\mathrm{y}=0, \frac{\partial u}{\partial x}=0$ and at $\mathrm{y}=1, \mathrm{u}=0$
4. Consider the PDE $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$

Solve the above parabolic equation subject to the following conditions:
At $\mathrm{t}=0, \mathrm{u}=1$; at $\mathrm{x}=0, \mathrm{u}=0$ and at $\mathrm{x}=1, \frac{\partial u}{\partial x}=0$; at $\mathrm{y}=0, \frac{\partial u}{\partial y}=0$ and at $\mathrm{y}=1, \mathrm{u}=0$
5. Consider the PDE $0=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$

Solve the above parabolic equation subject to the following conditions:
at $\mathrm{x}=0, \mathrm{u}=1$ and at $\mathrm{x}=1, \frac{\partial u}{\partial x}=0$; at $\mathrm{y}=0, \frac{\partial u}{\partial y}=0$ and at $\mathrm{y}=1, \mathrm{u}=0$

