Advanced Mathematical techniques in Chemical Engineering

Module XII : Solution of PDEs by Similarity solution method

Exercises

1. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to following conditions. At $\mathrm{t}=0, \mathrm{u}=0$; at $\mathrm{x}=0 \mathrm{u}=2 \mathrm{x}$ and at $\mathrm{y}=\infty, \mathrm{u}=0$
2. Solve the equation $y \frac{\partial u}{\partial x}=\frac{\partial^{2} u}{\partial y^{2}}$ subject to following conditions. At $x=0, u=1$; at $\mathrm{y}=0 \mathrm{u}=\mathrm{u}_{0}$ and at $\mathrm{y}=\infty, \mathrm{u}=0$.
3. Solve the above problem with the boundary condition at $\mathrm{y}=\infty, \mathrm{u}=2$
4. Solve the above problem with the boundary condition at $\mathrm{y}=\infty, \frac{\partial u}{\partial y}+u=0$
5. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to following conditions. At $t=0, \mathrm{u}=0$; at $\mathrm{x}=0 \mathrm{u}=1$ and at $\mathrm{y}=\infty, \frac{\partial u}{\partial y}=0$
