Advanced Mathematical techniques in Chemical Engineering

 Module XIII : Solution of PDEs by Integral method

 Module XIII : Solution of PDEs by Integral method}

Exercises

1. The equation $4 y \frac{\partial c}{\partial x}-3 k \frac{\partial c}{\partial y}=2 \frac{\partial^{2} c}{\partial^{2} y}$ is valid within mass transfer boundary layer. Subject to at $\mathrm{x}=0, \mathrm{c}=1$; at $\mathrm{y}=0, \frac{\partial c}{\partial y}+c=0$ and at $\mathrm{y}=\delta, \mathrm{c}=1$. Using the quadratic profile solve the above equation. The quadratic profile must satisfy the condition, at $\mathrm{y}=0, \mathrm{c}=\mathrm{c}_{\mathrm{g}}$
2. The equation $\frac{\partial c}{\partial t}-k \frac{\partial c}{\partial y}=2 \frac{\partial^{2} c}{\partial^{2} y}$ is valid within mass transfer boundary layer. Subject to at $\mathrm{t}=0, \mathrm{c}=1$; at $\mathrm{y}=0, \frac{\partial c}{\partial y}+c=0$ and at $\mathrm{y}=\delta, \mathrm{c}=1$. Using the quadratic profile solve the above equation. The quadratic profile must satisfy the condition, at $\mathrm{y}=0, \mathrm{c}=\mathrm{c}_{\mathrm{g}}$
3. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial y^{2}}$ within momentum boundary layer subject to following conditions. At $\mathrm{t}=0, \mathrm{u}=0$; at $\mathrm{y}=0 \mathrm{u}=1$ and at $\mathrm{y}=\delta, \mathrm{u}=1$. Solve this equation, assuming a linear profile of u inside the boundary layer.
4. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial y^{2}}$ within momentum boundary layer subject to following conditions. At $\mathrm{t}=0, \mathrm{u}=0$; at $\mathrm{y}=0 \mathrm{u}=1$ and at $\mathrm{y}=\delta, \mathrm{u}=1$. Solve this equation, assuming an exponential profile of u inside the boundary layer.
5. The equation $4 y \frac{\partial c}{\partial x}-3 k \frac{\partial c}{\partial y}=2 \frac{\partial^{2} c}{\partial^{2} y}$ is valid within mass transfer boundary layer. Subject to at $\mathrm{x}=0, \mathrm{c}=1$; at $\mathrm{y}=0, \frac{\partial c}{\partial y}+c=0$ and at $\mathrm{y}=\delta, \mathrm{c}=1$. Using a linear profile, solve the above equation. The linear profile must satisfy the condition, at $y=0, c=c_{g}$
