Advanced Mathematical techniques in Chemical Engineering

Module II : Onto, into, one to one function, completeness of space

Exercises

1. Consider the function $y = f(x) = e^{-x}$. The domain of x is $(0,\infty)$.

(i) If the domain of y is (0,1), check whether y is onto, into or one to one.

(ii) If the domain of y is $(0,\infty)$, check whether y is onto, into or one to one.

2. Find whether the sequence, $\{x_k\}$ is a Cauchy sequence or not. $x_{k+1} = 6 - \frac{9}{x_k}$. Check its

completeness.

3. Consider the function $y = f(x) = e^{-x} / (1 - e^{-x})$. The domain of x is $(0,\infty)$.

(ii) If the domain of y is (0,1), check whether y is onto, into or one to one. If the domain of y is $(0,\infty)$, check whether y is onto, into or one to one.

4. Consider the function $y = f(x) = \frac{ax^2}{1 + x^4}$. The domain of x is $(0,\infty)$.

(iii) If the domain of y is (0,1), check whether y is onto, into or one to one. If the domain of y is $(0,\infty)$, check whether y is onto, into or one to one.

5. Consider the function $y = f(x) = e^{-x} / x$. The domain of x is $(0,\infty)$.

(iv) If the domain of y is (0,1), check whether y is onto, into or one to one. If the domain of y is $(0,\infty)$, check whether y is onto, into or one to one.

6. The function $y = \frac{5x}{5x+4}$ is valid for $-1 \le x \le 3$. Check whether y is onto, into or one-toone, if (a) $E = [-\infty, \infty]$; (b) $E = [-\infty, 0]$; (c) $E = [0, -\infty]$; (d) E = [0, 1].