# Computational Techniques Module 3: Linear Equations

Dr. Niket Kaisare

Department of Chemical Engineering

Indian Institute of Technology - Madras

## Prerequisite

 We will assume some familiarity with the concept of linear algebra, vectors and matrices

Please review your +2 and
 First Year Undergraduate syllabi for familiarity

## A Quick Recap

Scalar: A single real number

$$a = 1.23$$

Vector: An ordered set of scalars

# of scalars is "dimension"

Has "length" and "direction"  $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 

$$\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Geometric Interpretation: A point in n-dimensional space



$$\mathbf{x} \in \mathbb{R}^2$$

Size → Norm

## A Quick Recap

Matrix: A rectangular array of numbers

$$A = \begin{bmatrix} 1 & 0.5 \\ 2 & 3 \\ 0 & 2 \end{bmatrix}$$
 Dimension:  $3x2$ 

- Linear operations:
   Addition, subtraction, scalar multiplication
- Matrix multiplication rules
- Eigenvalues and Eigenvectors

## A Linear Equation



## A Simple Example

Consider the following example

$$x + 2y = 1$$
$$x - y = 4$$



Solution is the point of intersection of the two lines

## Matrix Form of Linear Equations

$$x + 2y = 1$$
$$x - y = 4$$

$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A \qquad \mathbf{x} = \mathbf{b}$$

#### The Determinant Method

- Cramer's Rule
  - D = determinant of matrix A
  - $D_i$  = determinant of  $A_i$ , where
  - ullet  $\mathbf{A}_{\mathrm{i}}$  is obtained by replacing the i<sup>th</sup> column of  $\mathbf{A}$  with  $\mathbf{b}$

$$D = \begin{vmatrix} 1 & 2 \\ 1 & -1 \end{vmatrix} = -3 \qquad D_1 = \begin{vmatrix} 1 & 2 \\ 4 & -1 \end{vmatrix} = -9 \qquad D_2 = \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = 3$$

• A unique solution exists if  $D \neq 0$ 

$$x_1 = \frac{D_1}{D} = 3;$$
  $x_2 = \frac{D_2}{D} = -1$ 

### Parallel Lines: No Solution

$$x + 2y = 1$$
$$2x + 4y = 4$$



#### Co-Incident Lines: Infinite Solutions

$$x + 2y = 1$$
$$2x + 4y = 2$$

$$2x + 4y = 2$$

$$x + 2y = 1$$

#### Condition Number

$$x + 2y = 1$$
  
 $2x + 3.999y = 2.001$   $\Rightarrow x = 3; y = -1$ 

$$\begin{array}{ccc}
 x & +2y & =1 \\
 2x + 3.999 y = 2
 \end{array}
 \qquad \Rightarrow x = 1; y = 0$$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3.999 \end{bmatrix}$$
 Eigenvalues  $\lambda_1 = -2 \times 10^{-4}$ ;  $\lambda_2 = 4.99$ ;

## Examples of Linear ChE Systems

Reactor Network

Heat Exchange Network

Separation Processes

Plug Flow Reactor

## Extension to Larger Dimensions

#### Questions to think about

- How to represent n equations in n unknowns?
- Does the system have unique solution?
- Does the system have no solution?

## General n×n System

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

$$A\mathbf{x} = \mathbf{b}$$

## Outline of Linear Algebra Methods

- Cramer's Rule (and why it is not used)
- Direct Methods
  - Gauss Elimination
    - Analysis
    - Computational Effort
    - Pivoting
  - Gauss Jordan
  - Matrix Inversion
  - LU Decomposition

## Outline of Linear Algebra Methods

- Sparse Matrices: Thomas Algorithm
- Iterative Methods
  - Gauss-Siedel
  - Jacobi Iteration
  - Relaxation Methods
- Eigenvalues and Eigenvectors