Module 3: Size Characterization

1. Given the following particle size distribution (PSD) measured by a $0.6~\mu m$ -wavelength laser particle counter in a manufacturing facility:

Size	Range	Count
(nm)		
10 – 20		1000
20 – 30		500
30 – 40		200
40 – 50		100
50 – 100)	10

- ➤ Identify the light-scattering regime (assuming isolated spherical particles).
- > State how scattering intensity would change from size channel to channel.
- ➤ What is the nature of the particle size distribution curve? Is it consistent with typical clean room air contamination?
- ➤ What would be the preferred technique to quantify particle sizes in this size range?

- Name five required characteristics of a laser particle counter, and describe how these are ensured in practice.
- Sketch the tri-modal nature of atmospheric particle size distribution.

 What formation mechanisms are predominant in each size range?
- Sketch the nature of indoor particle size distribution. What formation mechanisms are predominant in each size range?
- Given a particle size distribution, how would you calculate a:
 - Linear mean diameter
 - Surface mean diameter
 - Volume mean diameter
 - o Sauter mean diameter?
 - o What is the relevance of the Sauter mean diameter?
- Describe the static and dynamic methods of particle size measurement. Give two examples of each technique.
- Describe how you would perform size characterization for the following cases, and outline the principles involved: (10 Marks)
 - 1 10 nm sized particles suspended in air
 - \circ Sub- μ m to μ m-sized particulate media used in a high-concentration polishing slurry
- What are the three common size-distributions found in practice?
 Sketch their characteristic size-distribution curves.