Chemical Reaction Engineering

Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore **About Chemical Reaction Engineering and Engineer**

One feature that distinguishes the education of Chemical Engineer from that of other Engineer is an exposure to the basic concepts of Chemical Reaction Engineering

Charles Hill, An Introduction to Chemical Engineering Kinetics and Reactor Design

About Chemical Reaction Engineering and Engineer

Chemical Reaction Engineering is that engineering activity which is concerned with the exploitations of Chemical Reactions on a Commercial Scale

Octave Levenspiel, Chemical Reaction Engineering

About Chemical Reaction Engineering and Engineer

> Typical tasks of Chemical Engineer are

- Design of Chemical Processes
- Maintain and Operate a process
- Fix some perceived problems
- Increase capacity or selectivity at minimum cost

Lanny Schmidt, The Engineering of Chemical Reactions

Scope of Chemical Reaction Engineering

- > petroleum refining, petrochemicals, chemicals, and pharmaceuticals
- biotechnology, microelectronics, advanced materials, and energy from non-fossil resources
- > environment, pollution prevention, sustainable development

Chemical Reaction Engineering – New frontiers

- New analytical instrumentation providing quantitative information on species and mechanisms
- New computational resources hardware and software
- Multiscale approach

Top Global Players in 2008

Rank	Company	Sales \$ bn
1	BASF (Germany)	70.5
2	DOW (U.S.)	57.5
3	Ineos (UK)	36
4	LyondalBasell	38.4
5	ExxonMobile Chemicals (USA)	38.4
27	Reliance Industries (India)	12.6

Chemical & Engineering News, August 2009

Narrowing In

SOURCE: BASF

Chemical & Engineering News, July 2007

Chemical Industry Sectors

Category	Typical Plant (TPA)	Price (\$/ kg)	E-Factor (Kg/Kg)
Petroleum Refining	10 ⁶ - 10 ⁸	0.05	0.1
Commodity chemicals	10 ⁴ - 10 ⁶	0.05-1	1-3
Fine chemicals	10 ² - 10 ⁴	1-5	2-10
Foods		0.5-25	
Materials		0	
Pharmaceuticals	10 - 10 ³	10	10-100

Electronic chemicals, Environment, Neutraceuticals, Chiral and Biopharmaceuticals,

Lanny Schmidt, The Engineering of Chemical Reactions

Chemistry is important A + B - > C + D is not a real reaction

Example: Ammonia synthesis

 $N - N + 3 H - H \leftrightarrow 2 N - H_3$

Example: aspirin synthesis

Lanny Schmidt, The Engineering of Chemical Reactions

Single reaction in an ideal single phase isothermal reactor is hardly encountered. Real reactors are extremely complex with multiple reactions multiple phases and intricate flow patterns

Example: Ethylene synthesis

$$egin{aligned} & C_2 H_6 o C_2 H_4 + H_2 \ & C_2 H_6 o C_2 H_2 + H_2 \ & 3 \ & C_2 H_6 o C_6 H_6 + 6 \ & H_2 \ & C_2 H_6 o 2 \ & C + 3 \ & H_2 \end{aligned}$$

Example: Ammonia synthesis

```
\begin{array}{l} CH_4 + H_2O \rightarrow CO + 3 \ H_2 \\ N_2 + 3 \ H_2 \leftrightarrow 2 \ NH_3 \end{array}
```


Reactions with simple kinetics are extremely rare.

Example: Ammonia synthesis

$$\mathbf{r}_{2+} - \mathbf{r}_{2-} = \mathbf{K}_1 \mathbf{k}_2 \left[\left(\frac{\mathbf{p}_{\mathsf{N}_2}}{\mathbf{p}^*} \right) - \frac{\left(\frac{\mathbf{p}_{\mathsf{N}_{\mathsf{H}_3}}}{\mathbf{p}^*} \right)^2}{\mathbf{K}_g \left(\frac{\mathbf{p}_{\mathsf{H}_2}}{\mathbf{p}^*} \right)^3} \right] \boldsymbol{\theta}_*^2$$

$$\theta * = \frac{1}{1 + \kappa_1 \frac{p_{N_2}}{p^{\bullet}} + \frac{\frac{p_{NH_3}}{p^{\bullet}}}{\kappa_3 \kappa_4 \kappa_5 \kappa_6 \kappa_7^{3/2} \left(\frac{p_{H_2}}{p^{\bullet}}\right)^{3/2}} + \frac{\frac{p_{NH_3}}{p^{\bullet}}}{\kappa_4 \kappa_5 \kappa_6 \kappa_7 \frac{p_{H_2}}{p^{\bullet}}} + \frac{\frac{p_{NH_3}}{p^{\bullet}}}{\kappa_5 \kappa_6 \kappa_7^{1/2} \left(\frac{p_{H_2}}{p^{\bullet}}\right)^{1/2}} + \frac{\frac{p_{NH_3}}{p^{\bullet}}}{\kappa_6} + \kappa_7^{1/2} \left(\frac{p_{H_2}}{p^{\bullet}}\right)^{1/2}}$$

Most industrial processes are heterogeneous

Process	Reaction	Conditions	Reactor	Comments
Catalytic naptha reforming	Naptha (?) → aromatics Endothermic	350-4000 kPa 490-525 C Pt-Al ₂ O ₃ G-S,	Fixed Bed	Catalyst deactivation Regeneration
NO _x Absorption	$\begin{array}{c} 2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2 \text{ (G)} \\ \text{NO}_2 \text{ (G)} \rightarrow \text{NO}_2 \text{ (L)} \\ 2 \text{ NO}_2 + \text{H}_2 \text{O} \rightarrow \text{ HNO}_2 \\ + \text{HNO}_3 \text{ (L)} \end{array}$	1 Atm 25-30 C G-L	Packed tower	
Chemical Vapor Deposition	$\begin{array}{l} \text{SiCl}_4 + \text{H}_2 \rightarrow \text{Si} (\text{S}) + 4 \\ \text{HCl} \end{array}$	10 ⁻⁶ - 10 ⁻³ atm 1000-1200 C micron thickness G-S	Chamber reactors	Uniformity essential Flow past plate
Antibiotics Production	Glucose → Penicillin Exothermic	1 atm, 30 C microbial cells G-L-C	Stirred tank reactors	Living

Transport processes are important

Ammonia Reactor - 1500 t NH3/day,
100 m³ volume, 250 t of catalyst.Catalyst - Fe with K and Al_2O_3

Industrial reactors have intricate flow patterns

- A : The main flow (pale blue) first flows along the pressure shell and cools it.
- **B**: In the first bed, both the temperature and the concentration increases.
- **C**: The gas is cooled in the upper heat exchanger and the third inlet gas stream (dark blue) is added.
- **D**: In the second bed, both the temperature and the concentration increases.

Summary - Chemical Reactor Analysis

R. Aris, Ind. & Eng. Chemistry, 56, p.22, 1964

Summary - Chemical Reactor Analysis

R. Aris, Ind. & Eng. Chemistry, 56, p.22, 1964

Step 2 – Reactor design

Course outline

Topic

1. Review of undergraduate reaction engineering:

Stoichiometry, thermodynamics of reacting systems, kinetics of elementary reactions, ideal reactors: CSTR/ PFR

2. Kinetics of complex reactions:

Reaction mechanism and kinetics, Chain, catalytic, polymerization, biochemical reactions, Analysis of reaction network, lumping analysis, Parameter estimation

Course outline

Topic

- 3. Conservation equations for chemically reacting mixtures
- 4. Heterogeneous reactions:

Mass transport with reaction, Catalytic and Non-catalytic gas-solid reactions, Gas-liquid reactions

5. Chemical Reactor Design:

Transient and steady state analysis, Optimal design of reactors, Multiphase reactors: fixed, fluidized, trickle bed, slurry etc, Non-ideal continuous flow reactors

Course Textbooks/Reference

- > Aris R., Elementary Chemical Reactor Analysis, Prentice-Hall 1969.
- Foggler, H. S., Elements of Chemical Reaction Engineering, Prentice Hall of India, 1994.
- Fromment G.F. and Bischoff K.B., Chemical Reactor Analysis and Design, John Wiley 1994.
- Schimdt L., The Engineering of Chemical Reactions, Oxford, 2005

