Chemical Reaction Engineering Lecture 2: Review of Undergraduate Material

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Ethylene production by thermal cracking of ethane

- \triangleright The thermal cracking of ethane is carried out in multitubular reactor. Typical production capacity of each tube is 10000 Tons per annum.
- \triangleright Reactor specifications:
	- \Box Feed to the reactor: ethane + steam (?)
	- \Box Inlet pressure 2.99 atm; temperature 680°C
	- Tube length 95 m, ethylene conversion -60%

Cracking of ethane to ethylene

Topic 1: Basic concepts

- \triangleright Representation of reaction
- \triangleright Extent of reaction and conversion
- \triangleright Thermodynamics and chemical reactions
	- □ Heat of reaction
	- □ Condition of equilibrium

Representation of chemical reaction – single reaction

▶ Consider a single chemical reaction in N species A_1, A_2, \ldots, A_N

▶ General representation:

$$
\sum_{j=1}^N v_j A_j = 0
$$

Representation of chemical reaction – multiple reactions

- \triangleright Consider R chemical reactions in N species A₁, A_2, \ldots, A_N
- ▶ General representation:

$$
\sum_{j=1}^{N} v_{ij} A_j = 0, \quad i = 1, 2, \dots, R
$$

Representation of chemical reaction – independent reactions

▶ Stoichiometric matrix

$$
\underline{v} = \left(\begin{array}{ccc} v_{11} & \cdots & v_{1N} \\ \vdots & \ddots & \vdots \\ v_{R1} & \cdots & v_{RN} \end{array} \right)
$$

> Number of independent reaction $R = rank \mid v$

Progress of chemical reaction – single reaction

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed system

 n_{i0} = number of moles of species *j* present initially nj = number of moles of species *j* at any time t

 \triangleright Molar extent of reaction - α

$$
\alpha = \frac{n_j - n_{j0}}{v_j}
$$

Molar extent of reaction

 \triangleright Properties of α

Q defined for the reaction

$$
\alpha = \frac{n_j - n_{j0}}{v_j} = \frac{n_k - n_{k0}}{v_k}
$$

\n
$$
\Rightarrow n_k = n_{k0} + \frac{v_k}{v_j} (n_j - n_{j0})
$$

 \Box Extensive property in moles

Q Always positive

Conversion of species

▶ Conversion X

$$
X = \frac{n_{j0} - n_j}{n_{j0}}
$$

> Stoichiometrically limiting species "k"

$$
\min\left(-\frac{n_{j0}}{v_j}\right)
$$

Cracking of ethane to ethylene

Molar flow at Molar flow at exit entry Ethane, F_1 Ethane, F_{10} Ethylene, $F_2 \dots$ (Courtesy of High Pressure Equipment Co., Erie, PA)

Stoichiometric tables – Flow reactor $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$

Concentrations in terms of conversion

$$
P v = Z F_T R T
$$

\n
$$
P_0 v_0 = Z_0 F_{T0} R T_0
$$
\n
$$
V = v_0 \left(\frac{P_0}{P}\right) \left(\frac{Z}{Z_0}\right) \left(\frac{T}{T_0}\right) \left(\frac{F_T}{F_{T0}}\right)
$$

$$
F_T = F_{T0} + \delta F_{10} X
$$

\n
$$
\frac{F_T}{F_{T0}} = 1 + \delta \frac{F_{10}}{F_{T0}} X = 1 + \delta y_{10} X = 1 + \varepsilon X
$$

$$
v = v_0 \left(\frac{P_0}{P}\right) \left(\frac{Z}{Z_0}\right) \left(\frac{T}{T_0}\right) \left(1 + \varepsilon X\right)
$$

Concentrations in terms of conversion

Summary – Stoichiometry of reaction

- ▶ Keywords & concepts
	- □ Stoichiometric coefficients
	- □ Multiple reactions
	- □ Set of independent reactions
	- □ Extent of reaction
	- **D** Conversion
	- □ Stoichiometric tables

Chemical Reaction Engineering Lecture 3: Review of Undergraduate Material

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Ethylene production by thermal cracking of ethane

- \triangleright The thermal cracking of ethane is carried out in multitubular reactor. Typical production capacity of each tube is 10000 Tons per annum.
- \triangleright Reactor specifications:
	- \Box Feed to the reactor: ethane + steam (?)
	- □ Inlet pressure 2.99 atm; temperature 680°C
	- Tube length 95 m, ethylene conversion -60%

Thermodynamic considerations

 \triangleright Equilibrium conversion

 \triangleright Working conditions of the reactor

 \triangleright Heat effects in a chemical reaction

Why thermodynamics

$$
A \cdot B
$$
\n
$$
r = 2640e^{\frac{(1500)}{T}}c
$$

$$
A \rightleftarrows B
$$

$$
r = 2.6 \times 10^6 e^{-\left(\frac{15000}{T}\right)} C_A - 3.9 \times 10^{33} e^{-\left(\frac{25000}{T}\right)} C_B
$$

Effect of temperature

$$
A \rightleftarrows B
$$

$$
T = 320
$$

$$
A \rightleftarrows B
$$

$$
T = 330
$$

Chemical Equilibrium

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place at constant temperature T and pressure P. The system will spontaneously change in the direction of increasing entropy, reaching equilibrium when entropy can not increase further.

 n_k

▶ Free energy and Gibb's equations

$$
dG = Vdp - SdT + \sum_{j=1}^{N} \mu_j dn_j,
$$

Chemical Potential $\mu_j = \left(\frac{\partial G}{\partial n_j}\right)_{T,P}$

Chemical Equilibrium

Gibb's Equation
$$
dG = Vdp - SdT + \sum_{j=1}^{N} \mu_j dn_j
$$

\nProgress of reaction $n_j = n_{j0} + v_j \alpha$ or $dn_j = v_j d\alpha$

\n $\Rightarrow dG = Vdp - SdT + \sum_{j=1}^{N} v_j \mu_j d\alpha$

\n \triangleright Equilibrium condition

$$
\left(\frac{\partial G}{\partial \alpha}\right)_{T,P} = \sum_{j=1}^{N} v_j \mu_j = 0
$$

Chemical potential

▶ Perfect gas mixture

$$
\mu_j(T, P, \underline{y}) = \mu_{j0}(T, P^r, \underline{y}^r) + RT \ln \frac{P y_j}{P^r}
$$

> Non-ideal gas mixture

$$
\mu_j\left(T,P,\underline{y}\right) = \mu_{j0}\left(T,P^r,\underline{y}^r\right) + RT \ln \frac{f_j}{f_j^r}
$$

y = *composition* , *T* = *temperature*, *P* = *pressure superscript r* = *reference* $P^r = 1$ *atm* $y^r = pure$ *j fj* = *fugacity*

Chemical potential

▶ Solution

$$
\mu_j(T, P, \underline{x}) = \mu_{j0}(T, P^r, \underline{x}^r) + RT \ln \gamma_j x_j
$$

x = *composition* , *T* = *temperature*, *P* = *pressure superscript r* = *reference* $\gamma = activity\ coefficient$

Free energy change $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$

 $\mu_{i} = \mu_{i0} + RT \ln \left(a_{i} \right)$

$$
\sum_{j=1}^{N} v_j \mu_j = \sum_j v_j \mu_{j0} + RT \sum_j v_j \ln(a_j)
$$

\n
$$
\Delta G = \Delta G^0 + RT \ln \left(\prod_j a_j^{v_j} \right)
$$

\n
$$
\Delta G = \Delta G^0 + RT \ln K_a
$$

Equilibrium condition
\n
$$
V_1 A_1 + V_2 A_2 + V_3 A_3 + V_4 A_4 = 0
$$
\n
$$
\Delta G = \Delta G^0 + RT \ln \left(\prod_j a_j^{v_j} \right) = 0
$$
\n
$$
\Delta G = \Delta G^0 + RT \ln K_a = 0
$$
\n
$$
K_a = \left(\prod_j a_j^{v_j} \right) = \exp \left(\frac{-\Delta G^0}{RT} \right)
$$

Equilibrium constant $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $K_a = \left(\prod_j a_j^{v_j}\right) = \exp\left(\frac{-\Delta G^0}{RT}\right)$ $K_p = \left(\prod_i P_j^{v_j}\right) = \left(\prod_i \left(P_{\mathcal{Y}_j}\right)^{v_j}\right)$ Pressure $K_f = \left(\prod_i f_j^{v_j}\right)$ Fugacity Concentration $K_c = \left(\prod C_j^{v_j} \right)$

Equilibrium extent of reaction $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $K_p = \begin{pmatrix} \Pi \end{pmatrix}$ *j* $P_{\overline{j}}$ \int \prod D^{V} _{*j*} \setminus $\left(\prod_i P_j^{\nu_j}\right)$ ' $P_j = y_j P =$ $N_{\overline{j}}$ N^-_I *P* $N_{j} = N_{j0} + V_{j}$ α $K_p = \begin{pmatrix} \prod \end{pmatrix}$ *j P* $N_{j0} + V_{j}$ α $N_{_{T0}} + \alpha \sum \nu_{_{j}}$ *j* $\overline{\sum}$ $\overline{}$ $\overline{}$ $\overline{}$) * * * $\left(\begin{array}{ccc} & \bigcap & \mathbb{V}^j \end{array} \right)$ \setminus $\overline{}$ $\overline{}$ $\overline{}$. / $= F(\alpha)$

Extent of reaction and operating conditions $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $K_p(T) = \left(\prod_j \left(P \frac{N_{j0} + v_j \alpha}{N_{T0} + \alpha \sum_j V_j}\right)^{v_j}\right) = F(\alpha, P, N_{j0})$

 $\frac{d}{dV}\left[\ln K_{P}(T)\right] = \frac{d}{dV}\left[F\left(\alpha, P, N_{j0}\right)\right] = \frac{\partial F}{\partial V} + \frac{\partial F}{\partial \alpha}\frac{d\alpha}{dV}$

Extent of reaction and operating conditions $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $d\alpha$ *dY* $= C$ $F\big(\pmb{\alpha}\big)$ F ' $\big(\alpha\big)$

Temperature C = ΔH $\frac{\Delta H}{RT^2}$ $\Delta H = heat \ of \ reaction$ $Pressure$ $C = \boldsymbol{V}_{\!j}^{}$ *j* \sum *P* $v_j = change$ *in no. of moles j* \sum *Inerts* $C = ?$

Equilibrium conversion - Exothermic reaction

Equilibrium conversion - Endothermic reaction

Equilibrium extent of reaction

$$
\sum_{j=1}^{N} V_{ij} A_j = 0, \quad i = 1, 2, ..., R
$$

$$
K_{pi} = \left(\prod_{j} P_{j}^{v_{ij}}\right)
$$

$$
N_{j} = N_{j0} + \sum_{i=1}^{R} V_{ij} \alpha_{i}
$$

Heat of reaction

$$
v_1 A_1 + v_2 A_2 + v_3 A_3 + v_4 A_4 = 0
$$

$$
\Delta H_R = \sum_j V_j h_j
$$

\n
$$
h_j(T) = h_j^0 + \int_{298}^T C_{Pj} dT
$$

\n
$$
\Delta H_R = \sum_j V_j h_j^0 + \sum_j V_j \int_{298}^T C_{Pj} dT
$$

\n
$$
\Delta H_R = \Delta H_R^0 + \sum_j V_j \int_{298}^T C_{Pj} dT
$$

Summary

- \triangleright Free energy
- \triangleright Chemical potential
- **> Condition of Equilibrium**
- \triangleright Equilibrium constant
- \triangleright Equilibrium extent of reaction
- \triangleright Operating conditions

Chemical Reaction Engineering Lecture 4: Review of Undergraduate Material

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Kinetics: Basic concepts

\triangleright Kinetics of irreversible and reversible reactions

- **Power law kinetics**
- □ Law of mass action kinetics
- \triangleright Rate of simple reactions

Classification of reactions

\triangleright Based on mechanism of the reaction □ Elementary and nonelementary reactions

Example: chlorination of nitric oxide to give nitrosyl chloride

 $2NO + Cl_2 \rightarrow 2NOCl$

Classification of reactions

\triangleright Based on the direction of the reaction reversible and reversible reactions

 $cyclopropane \rightarrow propylene$

 $trans$ – butylene \rightleftarrows cis – butylene

Classification of reactions

 \triangleright Based on number of phases present in the system **Example 10 Homogenous and heterogeneous reactions**

$$
C_2H_6(g) \to C_2H_4(g) + H_2(g)
$$

 $CO₂(g) + NaOH(l) \rightarrow NaHCO₃(l)$

Rate of chemical reaction – single reaction

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

 \triangleright Rate of reaction - r

$$
r = \frac{1}{V} \frac{d\alpha}{dt} \qquad \alpha = \frac{n_j - n_{j0}}{v_j}
$$

$$
r_j = \frac{1}{V} \frac{dn_j}{dt}
$$

Reaction rate

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$
r = r(T, P, y_1, y_2...y_{N-1})
$$

= $r(T, P, C_1, C_2...C_{N-1})$
= $r(T, C_1, C_2...C_{N-1}, C_N)$

Reaction rate – power law kinetics

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$
r = kC_1^{q_1}C_2^{q_2} \dots C_N^{q_N} = k \prod_{j=1}^N C_j^{q_j}
$$

 q_{j} is the order of the reaction wrt species A_{j} $q = \Sigma q_j$ is the overall order

Reaction rate – law of mass action kinetics

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$
r = k \prod_{j=1}^{N} C_j^{q_j}
$$

$$
q_j = \frac{1}{2} (|\mathbf{v}_j| - \mathbf{v}_j)
$$

Reaction rate – reversible reaction

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system $r = k_f \prod C_j^{q_j} - k_b \prod C_j^{q_j}$ $i=1$ *N N* $i=1$ **II** $q_j =$ 1 $\frac{1}{2}(|v_{j}| - v_{j})$ *q* ' $j =$ 1 $\frac{1}{2}(|v_{j}|+v_{j})$

Variation of reaction rate with progress of reaction

 \triangleright Consider a reaction Σ $v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$
r = r_f - r_b = k_f(T) \prod_{j=1}^{N} C_j^{q_j} - k_b(T) \prod_{j=1}^{N} C_j^{q_j}
$$

\n
$$
C_j = C_{j0} + \alpha V_j
$$

\n
$$
r(\alpha, T) = r_f(\alpha, T) - r_b(\alpha, T)
$$

Rate contours – exothermic reaction

Summary

- \triangleright Rate of reaction
- ▶ Power law kinetics
- **▶ Law of mass action kinetics**
- \triangleright Exothermic and endothermic reactions

