Chemical Reaction Engineering Lecture 2: Review of Undergraduate Material

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Ethylene production by thermal cracking of ethane

- The thermal cracking of ethane is carried out in multitubular reactor. Typical production capacity of each tube is 10000 Tons per annum.
- Reactor specifications:
 - □ Feed to the reactor: ethane + steam (?)
 - □ Inlet pressure 2.99 atm; temperature 680°C
 - □ Tube length 95 m, ethylene conversion 60%

Cracking of ethane to ethylene

Topic 1: Basic concepts

- Representation of reaction
- Extent of reaction and conversion
- Thermodynamics and chemical reactions
 - Heat of reaction
 - Condition of equilibrium

Representation of chemical reaction – single reaction

Consider a single chemical reaction in N species A₁, A₂,..., A_N

General representation:

$$\sum_{j=1}^{N} v_j A_j = 0$$

Representation of chemical reaction – multiple reactions

- Consider R chemical reactions in N species A₁, A₂,..., A_N
- General representation:

$$\sum_{j=1}^{N} v_{ij} A_j = 0, \quad i = 1, 2, \dots, R$$

Representation of chemical reaction – independent reactions

Stoichiometric matrix

$$\underline{V} = \left(\begin{array}{cccc} V_{11} & \dots & V_{1N} \\ \vdots & \ddots & \vdots \\ V_{R1} & \cdots & V_{RN} \end{array}\right)$$

> Number of independent reaction $R = rank \begin{bmatrix} v \\ = \end{bmatrix}$

Progress of chemical reaction – single reaction

- Consider a reaction Σ v_jA_j = 0 taking place in a closed system
 - n_{j0} = number of moles of species *j* present initially n_j = number of moles of species *j* at any time t
- > Molar extent of reaction α

$$\alpha = \frac{n_j - n_{j0}}{V_j}$$

Molar extent of reaction

> Properties of α

defined for the reaction

$$\alpha = \frac{n_j - n_{j0}}{v_j} = \frac{n_k - n_{k0}}{v_k}$$
$$\Rightarrow n_k = n_{k0} + \frac{v_k}{v_j} \left(n_j - n_{j0} \right)$$

Extensive property in moles

Always positive

Indian Institute of Science

Conversion of species

Conversion X

$$X = \frac{n_{j0} - n_j}{n_{j0}}$$

Stoichiometrically limiting species "k"

$$\min\left(-\frac{n_{j0}}{v_j}\right)$$

Cracking of ethane to ethylene

Molar flow at entry Ethane, F_{10} Molar flow at $C_{Outlesy of High Pressure Equipment Co., Etie, PA}$ Molar flow at exit Ethane, F_1 Ethylene, F_2 ...

Stoichiometric tables – Flow reactor $v_1A_1 + v_2A_2 + v_3A_3 + v_4A_4 = 0$

Entry (mol/ min)	Change (mol/ min)	Exit from the reactor (mol/min)
F ₁₀	-(F ₁₀ X)	$F_1 = F_{10} - F_{10}X$
F_{jO}	- v _j /v ₁ (F ₁₀ X)	$F_{j} = F_{j0} - v_{j} / v_{1} F_{10} X$
F _{I0}		$F_{I} = F_{I0}$
F _{T0}		$F_{T} = F_{T0} - (\Sigma v_j / v_1) F_{10} X$ $F_{T} = F_{T0} + \delta F_{10} X$
	(mol/ min) F ₁₀ F _{j0} F ₁₀	$\begin{array}{ll} (mol/ \\ min) & (mol/ \\ min) \\ F_{10} & -(F_{10}X) \\ F_{j0} & -v_{j}/v_{1} \\ (F_{10}X) \\ \end{array}$

Concentrations in terms of conversion

$$P v = Z F_T R T P_0 v_0 = Z_0 F_{T0} R T_0$$

$$v = v_0 \left(\frac{P_0}{P}\right) \left(\frac{Z}{Z_0}\right) \left(\frac{T}{T_0}\right) \left(\frac{F_T}{F_{T0}}\right)$$

$$F_{T} = F_{T0} + \delta F_{10} X$$

$$\frac{F_{T}}{F_{T0}} = 1 + \delta \frac{F_{10}}{F_{T0}} X = 1 + \delta y_{10} X = 1 + \varepsilon X$$

$$v = v_0 \left(\frac{P_0}{P}\right) \left(\frac{Z}{Z_0}\right) \left(\frac{T}{T_0}\right) \left(1 + \varepsilon X\right)$$

Concentrations in terms of conversion

Summary – Stoichiometry of reaction

- Keywords & concepts
 - Stoichiometric coefficients
 - Multiple reactions
 - Set of independent reactions
 - Extent of reaction
 - Conversion
 - Stoichiometric tables

Chemical Reaction Engineering Lecture 3: Review of Undergraduate Material

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Ethylene production by thermal cracking of ethane

- The thermal cracking of ethane is carried out in multitubular reactor. Typical production capacity of each tube is 10000 Tons per annum.
- Reactor specifications:
 - □ Feed to the reactor: ethane + steam (?)
 - □ Inlet pressure 2.99 atm; temperature 680°C
 - □ Tube length 95 m, ethylene conversion 60%

Thermodynamic considerations

Equilibrium conversion

> Working conditions of the reactor

Heat effects in a chemical reaction

Why thermodynamics

$$A - B$$

$$r = 26 \cdot 10e^{1500}$$

$$A \rightleftharpoons B$$

 $r = 2.6 \times 10^{6} e^{-\left(\frac{15000}{T}\right)} C_{A} - 3.9 \times 10^{33} e^{-\left(\frac{25000}{T}\right)} C_{B}$

Effect of temperature

$$A \rightleftharpoons B$$
$$T = 320$$

$$A \rightleftharpoons B$$
$$T = 330$$

Chemical Equilibrium

- Consider a reaction Σ v_jA_j = 0 taking place at constant temperature T and pressure P. The system will spontaneously change in the direction of increasing entropy, reaching equilibrium when entropy can not increase further.
- Free energy and Gibb's equations

$$dG = Vdp - SdT + \sum_{j=1}^{N} \mu_j dn_j,$$

Chemical Potential $\mu_j = \left(\frac{\partial G}{\partial n_j}\right)_{T,P,n_k}$

Indian Institute of Science

Chemical Equilibrium

Gibb's Equation
$$dG = Vdp - SdT + \sum_{j=1}^{N} \mu_j dn_j$$

Progress of reaction $n_j = n_{j0} + v_j \alpha$ or $dn_j = v_j d\alpha$
 $\Rightarrow dG = Vdp - SdT + \sum_{j=1}^{N} v_j \mu_j d\alpha$
> Equilibrium condition

$$\left(\frac{\partial G}{\partial \alpha}\right)_{T,P} = \sum_{j=1}^{N} v_j \mu_j = 0$$

Chemical potential

Perfect gas mixture

$$\mu_{j}(T,P,\underline{y}) = \mu_{j0}(T,P^{r},\underline{y}^{r}) + RT \ln \frac{Py_{j}}{P^{r}}$$

Non-ideal gas mixture

$$\mu_{j}(T,P,\underline{y}) = \mu_{j0}(T,P^{r},\underline{y}^{r}) + RT \ln \frac{f_{j}}{f_{j}^{r}}$$

 $\underline{y} = composition ,$ T = temperature, P = pressure $superscript \ r = reference$ $P^{r} = 1 \ atm$ $y^{r} = pure \ j$ $f_{j} = fugacity$

Chemical potential

Solution

$$\mu_{j}(T,P,\underline{x}) = \mu_{j0}(T,P^{r},\underline{x}^{r}) + RT \ln \gamma_{j} x_{j}$$

 $\underline{x} = composition$, T = temperature, P = pressure $superscript \ r = reference$ $\gamma = activity \ coefficient$

Free energy change $v_1 A_1 + v_2 A_2 + v_3 A_3 + v_4 A_4 = 0$ $\mu_j = \mu_{j0} + RT \ln(a_j)$

$$\sum_{j=1}^{N} v_{j} \mu_{j} = \sum_{j} v_{j} \mu_{j0} + RT \sum_{j} v_{j} \ln(a_{j})$$
$$\Delta G = \Delta G^{0} + RT \ln\left(\prod_{j} a_{j}^{v_{j}}\right)$$
$$\Delta G = \Delta G^{0} + RT \ln K_{a}$$

Equilibrium condition

$$v_1 A_1 + v_2 A_2 + v_3 A_3 + v_4 A_4 = 0$$

$$\Delta G = \Delta G^0 + RT \ln \left(\prod_j a_j^{v_j}\right) = 0$$

$$\Delta G = \Delta G^0 + RT \ln K_a = 0$$

$$K_a = \left(\prod_j a_j^{v_j}\right) = \exp\left(\frac{-\Delta G^0}{RT}\right)$$

Equilibrium constant $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $K_{a} = \left(\prod_{j} a_{j}^{v_{j}}\right) = \exp\left(\frac{-\Delta G^{0}}{RT}\right)$ $K_{P} = \left(\prod_{i} P_{j}^{v_{j}} \right) = \left(\prod_{i} \left(Py_{j} \right)^{v_{j}} \right)$ Pressure $K_{f} = \left(\prod_{i} f_{j}^{v_{j}}\right)$ Fugacity Concentration $K_{C} = \left(\prod C_{j}^{v_{j}} \right)$

Equilibrium extent of reaction $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $P_j = y_j P = \frac{N_j}{N_-} P$ $K_{P} = \left(\prod_{i} P_{j}^{v_{j}} \right)$ $N_i = N_{i0} + v_i \alpha$ $K_{P} = \left(\prod_{j} \left[P \frac{N_{j0} + v_{j} \alpha}{N_{T0} + \alpha \sum_{j} v_{j}} \right]^{v_{j}} = F(\alpha)$

Extent of reaction and operating conditions $v_1 A_1 + v_2 A_2 + v_3 A_3 + v_4 A_4 = 0$ $K_P(T) = \left(\prod_j \left[P \frac{N_{j0} + v_j \alpha}{N_{T0} + \alpha \sum_j v_j} \right]^{v_j} \right) = F(\alpha, P, N_{j0})$

 $\frac{d}{dY} \Big[\ln K_P(T) \Big] = \frac{d}{dY} \Big[F \Big(\alpha, P, N_{j0} \Big) \Big] = \frac{\partial F}{\partial Y} + \frac{\partial F}{\partial \alpha} \frac{d\alpha}{dY}$

Extent of reaction and operating conditions $V_1A_1 + V_2A_2 + V_3A_3 + V_4A_4 = 0$ $\frac{d\alpha}{dY} = C \frac{F(\alpha)}{F'(\alpha)}$

Temperature $C = \frac{\Delta H}{RT^2}$ $\Delta H = heat of reaction$ Pressure $C = -\frac{\sum_{j}^{j} V_{j}}{P}$ $\sum_{j} V_{j} = change in no. of moles$ Inerts C = ?

Equilibrium conversion - Exothermic reaction

Equilibrium conversion - Endothermic reaction

Equilibrium extent of reaction

$$\sum_{j=1}^{N} \mathbf{v}_{ij} A_{j} = 0, \quad i = 1, 2, ..., R$$

$$K_{Pi} = \left(\prod_{j} P_{j}^{v_{ij}}\right)$$
$$N_{j} = N_{j0} + \sum_{i=1}^{R} v_{ij} \alpha_{i}$$

Heat of reaction

$$v_1 A_1 + v_2 A_2 + v_3 A_3 + v_4 A_4 = 0$$

$$\Delta H_R = \sum_j v_j h_j$$

$$h_j(T) = h_j^0 + \int_{298}^T C_{Pj} dT$$

$$\Delta H_R = \sum_j v_j h_j^0 + \sum_j v_j \int_{298}^T C_{Pj} dT$$

$$\Delta H_R = \Delta H_R^0 + \sum_j v_j \int_{298}^T C_{Pj} dT$$

Summary

- Free energy
- Chemical potential
- Condition of Equilibrium
- Equilibrium constant
- Equilibrium extent of reaction
- > Operating conditions

Chemical Reaction Engineering Lecture 4: Review of Undergraduate Material

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Kinetics: Basic concepts

Kinetics of irreversible and reversible reactions

- Power law kinetics
- Law of mass action kinetics
- Rate of simple reactions

Classification of reactions

Based on mechanism of the reaction Elementary and nonelementary reactions

Example: chlorination of nitric oxide to give nitrosyl chloride

 $2NO + Cl_2 \rightarrow 2NOCl$

Classification of reactions

Based on the direction of the reaction Irreversible and reversible reactions

 $cyclopropane \rightarrow propylene$

 $trans - butylene \rightleftharpoons cis - butylene$

Classification of reactions

Based on number of phases present in the system
 Homogenous and heterogeneous reactions

$$C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g)$$

 $CO_2(g) + NaOH(l) \rightarrow NaHCO_3(l)$

Rate of chemical reaction – single reaction

- > Consider a reaction $\Sigma v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system
- Rate of reaction r

$$r = \frac{1}{V} \frac{d\alpha}{dt} \qquad \alpha = \frac{n_j - n_{j0}}{V_j}$$
$$r_j = \frac{1}{V} \frac{dn_j}{dt}$$

Reaction rate

> Consider a reaction $\Sigma v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$r = r(T, P, y_1, y_2 ... y_{N-1})$$

= $r(T, P, C_1, C_2 ... C_{N-1})$
= $r(T, C_1, C_2 ... C_{N-1}, C_N)$

Reaction rate – power law kinetics

Consider a reaction Σ v_jA_j = 0 taking place in a closed, isothermal, constant pressure system

$$r = kC_1^{q_1}C_2^{q_2}\dots C_N^{q_N} = k\prod_{j=1}^N C_j^{q_j}$$

 q_j is the order of the reaction wrt species A_j q = Σq_j is the overall order

Reaction rate – law of mass action kinetics

> Consider a reaction $\Sigma v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$r = k \prod_{j=1}^{N} C_j^{q_j}$$
$$q_j = \frac{1}{2} \left(\left| \boldsymbol{v}_j \right| - \boldsymbol{v}_j \right)$$

Reaction rate – reversible reaction

> Consider a reaction $\Sigma v_i A_i = 0$ taking place in a closed, isothermal, constant pressure system $r = k_f \prod C_j^{q_j} - k_b \prod C_j^{q_j}$ i=1i=1 $q_j = \frac{1}{2} \left(\left| \boldsymbol{v}_j \right| - \boldsymbol{v}_j \right)$ $q'_{j} = \frac{1}{2} (|v_{j}| + v_{j})$

Variation of reaction rate with progress of reaction

> Consider a reaction $\Sigma v_j A_j = 0$ taking place in a closed, isothermal, constant pressure system

$$r = r_f - r_b = k_f(T) \prod_{j=1}^N C_j^{q_j} - k_b(T) \prod_{j=1}^N C_j^{q'_j}$$
$$C_j = C_{j0} + \alpha v_j$$
$$r(\alpha, T) = r_f(\alpha, T) - r_b(\alpha, T)$$

Rate contours – exothermic reaction

Summary

- Rate of reaction
- Power law kinetics
- Law of mass action kinetics
- Exothermic and endothermic reactions

