Chemical Reaction Engineering Heterogeneous reactions

> Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Topic 6: Heterogeneous reactions

- Gas-solid catalytic reactions
- Gas-solid noncatalytic reactions
- Gas-liquid reactions

Heterogeneous catalysis

Heterogeneous catalysis

Concentration and temperature profiles

External transport

Figure 3.2.a-1 Mass transfer between a fluid and a bed of particles. Curve 1: Gamson et al. [3], Wilke and Hougen [4]. Curve 2: Taecker and Hougen [5]. Curve 3: McCune and Wilhelm [6]. Curve 4: Ishino and Otake [7]. Curve 5: Bar Ilan and Resnick [8]. Curve 6: De Acetis and Thodos [9]. Curve 7: Bradshaw and Bennett [10]. Curve 8: Hougen [11]: Yoshida, Ramaswami, and Hougen [12] (spheres; $\varepsilon = 0.37$).

Figure 3.2.b-1 Heat transfer between a fluid and a bed of particles. Curve 1: Gamson et al., Wilke and Hougen [3, 4]. Curve 2: Baumeister and Bennett (a) for $d_t/d_p > 20$, (b) mean correlation [13]. Curve 3: Glaser and Thodos [14]. Curve 4: de Acetis and Thodos [9]. Curve 5: Sen Gupta and Thodos [15]. Curve 6: Handley and Heggs [16] ($\varepsilon = 0.37$).

Bulk/Molecular diffusion

Binary

$$D_{12} = \frac{1.86 \times 10^{-3} T^{3/2} \left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{1/2}}{P \sigma_{12}^2 \Omega} \left[gases : 10^{-1} ; liquids : 10^{-5} cm^2/s\right]$$

$$N_1 = -D_{12} C_T \nabla y_1 + y_1 \left(N_1 + N_2\right)$$

Multi-component

$$N_{j} = -D_{jm}C_{T}\nabla y_{j} + y_{j}\sum_{k=1}^{N}N_{k} \quad D_{jm} = \frac{\sum_{k\neq j}^{N}\frac{1}{D_{jk}}\left(y_{k} - y_{j}\frac{N_{k}}{N_{j}}\right)}{1 - y_{j}\sum_{k=1}^{N}N_{k}/N_{j}}$$

Characterization of catalyst pellet

Figure 3.4-1 Pore-size distribution in catalyst pellets. (a) Pellet 2. (b) Pellet 1. (From Cunningham and Geankoplis [28].)

Transport in pore

$$-\frac{1}{RT}\nabla p_{j} = \sum_{k\neq j}^{N} \frac{1}{D_{jk}} \left(y_{k}N_{j} - y_{j}N_{k} \right) + \frac{N_{j}}{D_{Kj}} + \frac{y_{j}}{D_{Kj}} \left(\frac{PB_{0}}{RT\mu} \right) \nabla P$$

$$D_{Kj} = \frac{2}{3} \overline{r} \left(\frac{8RT}{\pi M_j} \right)^{1/2}$$

Reaction and diffusion $A \rightarrow B$

mulation
$$C_A A_g dz \Big|_{t+dt} - C_A A_g dz$$

 $D_{eA} \frac{dC_A}{dz} A \Big|_{z+dz} dt$
 $D_{eA} \frac{dC_A}{dz} A \Big|_z dt$
rated $-r A dz dt$

$$\frac{\partial}{\partial t} \left(\varepsilon_p C_A \right) = \frac{\partial}{\partial z} \left(D_{eA} \frac{\partial C_A}{\partial z} \right) - r$$

Concentration profiles

Figure 3.6.a-1 Distribution and average value of reactant concentration within a catalyst pore as a function of the parameter ϕ . (Adapted from Levenspiel [75].)

Effectiveness factor

Figure 8.11 Effectiveness factor (η) as a function of Thiele modulus (ϕ) for an isothermal particle; three regions indicated:

Effect of geometry

Figure 3.6.a-2 Effectiveness factors for (1) slab, (2) cylinder, and (3) sphere(from Aris [78].)

Figure 3.6.a-3 Effectiveness factors for slab, cylinder and sphere as functions of the Thiele modulus ϕ . The dots represent calculations by Amundson and Luss (1967) and Gunn (1967). (From Aris [74].)

Nonlinear kinetics

Figure 3.6.b-1 Generalized plot of effectiveness factor for simple order reactions.

Falsification of the kinetics

Falsification of the kinetics

Nonisothermal pellet

Figure 3.7.a-1 Effectiveness factor with first-order reaction in a spherical nonisothermal catalyst pellet (from Weisz and Hicks [112]).

External and internal energy transfer limitations

Figure 4.12, Measured Internal and External Temperature Profiles During the Hydrogenation of Benzene on Ni as a Function of Feed Composition for Two Pellets of Different Conductivities. [After Kehoe and Butt (1972)].

Multiple steady states and hystersis

Gas-solid noncatalytic reactions

Figure 9-1 Examples of fluid-solid and fluid-liquid reactions of approximately spherical solid or liquid particles.

Gas-solid noncatalytic reactions

Figure 4.1-2 General model (from Wen [2]).

Figure 4.1-3 Truly homogeneous model. Concentration profiles (from Wen [2]).

Gas-solid noncatalytic reactions

Figure 4.1-2 General model (from Wen [2]).

Figure 4.1-1 Heterogeneous shrinking core model with sharp interface. Concentration profiles of gas and solid reactants (from Wen [2]).

Shrinking particle model

Shrinking unreacted core model

Burning of coke from alumina-silica catalyst

Figure 1

Average observed burning rates of con-ventional silica alumina cracking cata-lyst. Initial carbon content 3.4 wt-%. Beads (dashed line), and ground-up catalyst (full curve). From Weisz and Goodwin (1963).

Burning of coke from alumina-silica catalyst

Figure 2

Appearance after partial burnoff (a) and coke concentration versus radius in beads for successive stages of burnoff (b), for three temperature levels. From Weisz and Goodwin (1963).

Burning of coke

$$t = \frac{R\rho_s}{3C_{1b}k_g}X + \frac{R^2\rho_s}{6C_{1b}D_{1e}} \left[1 - 3\left(1 - X\right)^{\frac{2}{3}} + 2\left(1 - X\right)\right] + \frac{R\rho_s}{kC_{1b}} \left[1 - \left(1 - X\right)^{\frac{1}{3}}\right]$$

Figure 3 Burnoff function versus time for three dif-ferent diameter beads. From Weisz and Goodwin (1963).

٠

Gas-solid reaction: General Model - f = 1

Figure 4.2-1

General model. Concentration profiles for $\phi'' = 1$. From Wen (1968).

Gas-solid reaction: General Model – f = 70

Gas-liquid reactions

- > gas purification processes
 - CO2 removal from synthesis gas by aqueous solution of hot potassium carbonate, ethanolamines
 - Removal of H2S by ethanolamines or sodium hydroxide
- production processes
 - Air oxidation of aldehydes to acids
 - Oxidation of cyclohexane to adipic acid
 - chlorination of benzene
 - Nitric acid, sulphuric acid

Examples

Rections	7 (°C)	C _{at} (kmol/m²)	C ₂₀ (knol/m ¹)	Catalyst	Cat. conc. (kmol/m ³)	D_4 (m²/m - lur)	A ₁ (m²/m² hr)	A	y
Chlorinatious									
$B + Cl_2 \rightarrow CB + HCl$	80		10:45	FeC1 ₂		2.027×10^{-1}	L 303	4.143 m ³ /kmol hr	0.0227
id.	20	0.1245	11.22	SeC1,	0.049	1.059×10^{-1}	0.756	43.09 m ³ /kmol hr	0.0999
TCE + Cl ₂ → C ₂ H ₄ Cl ₄ + HCI	70		10.26			8.856×10^{-1}	0.576	4.619 m ³ /kmol hr	0.0357
$1PB + Cl_2 \rightarrow MC + HCl$	20	0.1750	7.180	SeC1,	0.012	1.099×10^{-9}	0.734	850.6 m ³ /kmol hr	0.353
$EB + CI_2 \rightarrow MC + HCI$	- 20	0.1060	8.179	SeCi,	0.00208	1.234×10^{-9}	0.828	2087 m ³ /kmol hr	0.554
$T + Cl_1 \rightarrow MC + HCl$	20	0.1135	9.457	S=C1,	0.00036	1.309×10^{-3}	0.828	3464 m ³ /kmol hr	0.798
$p X + Cl_1 \rightarrow MC + HCl$	20	0.0685	8.965	SeCl.	0.00066	1.234×10^{-9}	0.698	14430 m ³ /kmol hr	1.718
$\sigma X + Cl_2 \rightarrow MC + HCl$	20	0.1100	8.311	SeCl ₄	0.00066	1.018×10^{-9}	0.796	16050 m ³ /kmai hr	1.464
Oxideviore									
$THF + O_2 \rightarrow HP$	65		12.35	ADBN	0.05	2.101×10^{-5}	1.145	0.0138 hr **	0.00847
$EB + O_2 \rightarrow HP$	80			Cu ⁴¹ -Stearate	1.62×10^{-9}	3.197×10^{-9}	1.498	0.000375 hr ⁺¹	0.60073
id.	80		7,236	Cu [#] -Stearste	0.056	3.197×10^{12}	1.498	2.627 m ³ /kmol hr	0.0170
$\sigma X + O_1 \rightarrow \sigma TA$	160					$5.389 \times 10^{+9}$	0.929	0.1025 m ² /kmod hr	0.258

Table 6.3.d-2 Characteristic parameters of some industrial gas-liquid reactions (from Barona [6]).

B: benzene; MCB: monochlorobenzene; TCE: 1,1,2-trichloroethane; i PB: 1-proppibenzene; EB: ethylbenzene; T: toluene; p-X: p-Xylene; e-X: e-sylene; MC: monochloride of 1 PB, EB, T, p-X, and o-X; THF: tetrahydroflatane; HP: hydroperoxide; o-TA: o-tolaic acid; ADBN: and iso bayyonitelle.

Two-film model

Slow reaction

Moderate reaction

Fast reaction <mark>A(g)</mark> + B(aq)⊠ C(aq) XL A۰ **p**_A* \mathbf{p}_{A0} \mathbf{C}_{B0} C_A, C_{A0}=0 Liquid Gas

Fast reaction

Figure 6.3.b-1 Enhancement factor diagram for $C_{Ab} = 0$.

Very Fast reaction

