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1 Dimensional analysis:

1. The dimensionless number is a ratio of the rate of energy generated
due to viscous dissipation, and the rate of energy conducted due to the
temperature difference. From dimensional analysis, the rate of energy
generated due to viscous dissipation per unit volume of the fluid, which
has dimensions of ML−2T −3, is proportional to µ(U/D)2, where µ, U
and D are the viscosity, velocity and diameter of the tube. The rate
of conduction of energy across the tube is (k∆T/D2), where k is the
thermal conductivity and ∆T is the temperature difference. The ratio
of these is the dimensionless Brinkman number (µU2/k∆T ), which give
the ratio of energy generated due to dissipation and energy conducted
due to temperature variations.

2. In this problem, there are ten dimensional variables, and four dimen-
sions, M, L, T, A. So there should be six dimensionless groups. Of
these three are ratios, (R/L), (ǫw/ǫo) and (µw/µo). The other three
dimensionless groups involve four physical mechanisms, inertia, viscos-
ity, surface tension and electrical stress. On the basis of dimensional
analysis, we can infer that the stress due to electrical effects,

Stress = ǫw
V

L4
Function(R/L, ǫw/ǫo) (1)
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If the droplet were small compared to the distance between plates, one
would expect a constant potential gradient (V/L) around the droplet.
In this case, the stress would be

Stress = ǫw

(

V

L2

)

1

R2
Function(ǫw/ǫo) (2)

The dimensionless numbers include the Reynolds number (ratio of in-
ertia and viscosity), the capillary number (ratio of surface tension and
viscosity) and a number which gives the ratio of viscous stresses and
electrical stresses, (ǫV/R3µU).

3. The dimensions are,

E ∼ MLT −3A−1 (3)

ǫ0 ∼ A2T 4L−3M−1 (4)

B ∼ MT −2A−1 (5)

µ0 ∼ ML2T −2A−2 (6)

J ∼ AL−2 (7)

4. Nozzle design The nozzle diameter and the flow rate through the
nozzle have to be adjusted in a manner that the desired drop size is
obtained due to the flow through the nozzle. The drop size Dp, and
the velocity of the drops Up, will depend on the following parameters
with their dimensions

• Diameter of nozzle D(L)

• Average flow speed through the nozzle U(LT −1)

• The density of the liquid ρ(ML−3)

• The viscosity of the liquid µ(ML−1T −1)

• The surface tension of the interface between the liquid and air
γ(MT −2)

• The surface tension between the liquid and the nozzle material
γs(MT −2)

In the above, there are six variables and three dimensions, so there
should be three dimensionless numbers. The three are the Reynolds
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number, (ρUD/µ), the capillary number (which gives the ratio of vis-
cous and surface tension forces) (µU/γ), and the ratio of surface ten-
sions of the liquid - air and liquid - surface interfaces (γs/γ). So long
as the material used in design remains unchanged, the ratio of sur-
face tensions remains unchanged and so this can be neglected in the
calculations.

It is first important to estimate the magnitudes of the Reynolds and
capillary numbers. The Reynolds number scales as (103×0.5×10−4/0.1)
for nozzle of diameter 100µm and droplet speeds of 0.5 m/s. This
indicates that inertial forces are not likely to be important, and the
droplet size is likely to be determined by the balance between viscous
and surface tension forces. The capillary number can be estimated as
0.1 × 1/0.1, which is 1 for a typical surface tension of 1 N/m, and a
velocity of 1 m/s. Consequently, a dimensionless relationship for the
droplet size and the droplet velocity at ejection can be determined as

Dp

D
= Φ

(

µU

γ

)

Up

U
= Ψ

(

µU

γ

)

The above scaling relations indicate that in the limit of low Reynolds
number, the droplet diameter is a linear function of the nozzle diame-
ter, and the droplet velocity is a linear function of the nozzle velocity.
Consequently, it is sufficient to carry out experiments for a particu-
lar nozzle diameter and experimentally measure the range of droplet
sizes obtained as a function of the capillary number. The nozzle and
the flow speed can then be designed for the desired droplet size and
droplet speed.

The next problem is to design the diameter of the spray drier, so that
the droplet dries completely before it impacts the wall of the drier. For
this, it is necessary to know the latent heat required for evaporating all
the moisture in the droplet, and the rate of heat transfer which deter-
mines the rate at which heat is supplied to the droplet. The latent heat
of water is about 1000 Btu/lb, which works out to about 2.2 ×106 J/kg.
For a droplet of radius 100 µm, the amount of heat required to evap-
orate 80 % of the water is 0.8×2.2 × 106J/kg×1000kg/m3×(π/6×(1 ×
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10−4)3)m3 = 9.21 × 10−4 J. The heat flux, which is the heat transfer
rate per unit area that has to be achieved, is 3 × 104 J/m2.

The heat flux at the droplet surface is related to the following param-
eters with the following dimensions

• Heat flux per unit area (q/A)(HL−2T −1)

• Droplet radius Dp(L)

• Droplet velocity Up(LT −1)

• Thermal conductivity of air k(HL−1T −1Θ−1)

• Specific heat of air cp(HM−1Θ−1)

• Density of air ρa(ML−3)

• Viscosity of air µa(ML−1T −1)

• Average temperature difference between the air and the droplet
∆T (Θ)

There are eight dimensional parameters, and five dimensions, so it is
possible to obtain three dimensionless groups. These are the Reynolds
number (ρaUpDp/µa), the Prandtl number (cpµa/k), and the dimen-
sionless heat flux (q/A)(Dp/k∆T ). Therefore, the heat average heat
flux can be determined using the following relation

q

A

Dp

k∆T
= Φ

(

ρaDpUp

µa

,
cpµa

k

)

The heat flux can be calculated by empirical relations of the form

q

A

Dp

k∆T
= 2.0 + 0.6

(

ρaDpUp

µa

)1/2
(cpµa

k

)1/3

which are available in standard text books.

In the above relationship, the Reynolds number can be estimated as
1kg / m3×1m/s×10−4m/10−5kg/m/s = 10. This is not small, so inertia
could be important for heat transfer through the air. The Prandtl
number for gases is typically O(1), so the dimensionless heat flux is
between 2 − 10 typically. Using the thermal conductivity for air (2 ×
10−2J/m/s/oC), and an average temperature difference between the
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air and the droplet of 40oC, the heat transfer rate is at least 2×2 ×
10−2J/m/s/ oC × 40oC/10−4m = 1.6 × 104J/m2/s. Consequently, the
time required for drying is about 2 seconds. At a speed of 0.5 m/s, it
is necessary to have a spray drier of radius 1m.

It is not enough to ensure that the necessary latent heat is transferred
to the particle, it is also necessary to determine whether all the water
evaporated can diffuse out of the particle within the time required for
the particle to reach the wall. This is a mass transfer problem, and
the flux of particle from the surface j (mass per unit area per unit
time) has to be predicted as a function of the radius of the particle,
and the difference in moisture concentration between the surface of the
particle and the ambient air. If we assume that the ambient air is dry,
the water vapour concentration at the particle surface is the saturation
concentration at that temperature. If the vapour pressure is 0.4 atm,
then the concentration is 0.4 times the density of air, or about 0.4 kg
m−3. The mass diffusion coefficient for water in air is about 2 × 105

m2/s. In order to ensure that all the moisture is transferred from the
particle, it is necessary to evaporate about 1.33 × 10−2 kg/m2 of the
surface of the droplet. This is obtained as follows. The mass of water
per droplet is 0.8× 103kg/m3 × (π/6× (10−4)3)m3, and this is divided
by the area of the droplet π×(104)m2 to get the above mass transferred
per unit volume.

The mass flux at the surface of the droplet depends on the following
parameters, with their respective units.

• Mass flux per unit area j(MwL−2T −1)

• Droplet radius Dp(L)

• Droplet velocity Up(LT −1)

• Diffusivity of air D(LT −2)

• Density of air ρa(ML−3)

• Viscosity of air µa(ML−1T −1)

• Average concentration difference between the air and the droplet
∆c(MwL−3)

There are seven dimensional parameters, and four dimensions, so there
are three dimensionless units. These are easily derived using methods
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similar to those used for heat transfer, and a general relationship of the
following form is obtained

jDp

D∆c
= Φ

(

ρaDpUp

µa
,

µa

ρaD

)

This is the most we can do with dimensional analysis, but experiments
have been done to determine the above relationship, and the result is
exactly the same as that for heat transfer upto a Reynolds number of
about 1000

jDp

D∆c
= 2.0 + 0.6

(

ρaDpUp

µa

)1/2(
µa

ρaD

)1/3

For design purposes, we can take a lower limit of 2 for the dimensionless
number on the left. Using this, the flux can be estimated as 2 × (2 ×
10−5m2/s × 0.4kg/m3/10−4m, which is 8 × 10−2kg/m2/s. Using this,
the time required is estimated as 0.17 s.

5. First, it is useful to see why there is a limit on the velocity of water
through the bed. This is because, if the force exerted by the water on
the particles is greater than the difference between the weight and the
buoyancy force of the particles, the particles will be swept away by the
flow. The density of carbon ρc is 1.1 ×103 kg / m3, while that of water
ρw is 1.0 ×103 kg / m3. The net force exerted by the particles (weight
- buoyancy) is given by (ρc − ρw)(4π/3)r3, where r is the radius of the
particles. This works out to 5.236× 10−9 N. The upward force exerted
on the particles due to flow is 6πµrU , which is 1.885×10−6U N, where
U is measured in m/s. For the two to be equal, the velocity is 2.78
mm/s. Some safety factor must have been added to stipulate that the
maximum velocity is 1 mm/s.

The parameters which affect the design of the bed, and their dimen-
sional dependences, can be listed as follows

• Height of the bed H(L)

• Diameter of the bed D(L)

• Particle diameter d(L)

• Inlet concentration ci(Mo/L3)
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• Outlet concentration co(Mo/L3)

• Adsorption rate constant ka(T −1)

• Diffusion constant for the organics Dc(L2T −1)

• Porosity of the bed ǫ (dimensionless)

• Velocity U(LT −1)

• Density of fluid ρ(ML−3)

• Viscosity of fluid µ(ML−1T −1)

Of these parameters, the density and viscosity are required for me-
chanical calculations, and not for mass transfer calculations. Since
the diameter and height of the bed are determined from mass trans-
fer considerations, these need not be included. However, they will be
necessary for determining the pressure drop required, as we shall see
later. Therefore, there are a total of nine dimensional variables, and
these involve three dimensions (Mo,L, T ), and this leaves us with six
dimensionless groups. One of these is the porosity, which is itself di-
mensionless. There are two length ratios, (D/d) and (H/d) relating
the three length scales in the problem. There is one concentration ra-
tio, which can be considered as the adsorption fraction (ci − co)/ci, of
the organics. This leaves us with two other dimensionless parameters
which need to be determined form the variables (ka, Dc, U) and the
other length parameters. This brings up the question about what is
the appropriate length scale for scaling these parameters. The choice
of the correct length scale requires physical arguments. The adsorp-
tion of the organics into the fluids occurs due to the diffusion of the
organics from the fluid to the surface of the carbon particles over length
scales comparable to the particle diameter, so it is appropriate to use
the particle diameter as the appropriate length scale for dimensionless
groups. With this, it is easy to see that one can get two dimensionless
groups, (kad

2/Dc), which gives the ratio of adsorption and diffusion,
and (Ud/Dc), which gives the ratio of convection and diffusion. There-
fore, the six dimensionless groups are

• (D/d)

• (H/d)

• (ci − co)/ci
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• ǫ

• (kad
2/Dc)

• (Ud/Dc)

It is immediately apparent that there is a considerable separation of
length scales in the problem. While the diameter and the height could
be of the order of meters, the particle diameter is measured in millime-
ters. Consequently, the mass transfer process, which occur on the scale
of the particle diameter locally, will be insensitive to the total diameter
of the bed. In other words, every point along a horizontal cross section
of the bed is equivalent to every other point. Therefore, if the velocity
of the fluid through the bed is fixed, the diameter is determined from
the flow rate. If the velocity through the bed is U , then the ‘superfi-
cial’ velocity (at the entrance) is ǫU , since the void fraction of the bed
is ǫ. The flow rate is expressed in terms of the superficial velocity as
Q = ǫU(πD2/4). Since the flow rate is given (180 l/min or 3 × 10−3

m3/s), the diameter is related to the velocity U by D = (12/P iǫU)1/2,
where U is expressed in m/s. For a maximum velocity U = 1 mm/s, the
bed diameter turns out to be 2.9 m. For lower velocities, the diameter
will be correspondingly larger.

It is useful, at this point, to estimate the relative magnitudes of convec-
tion, diffusion and adsorption. The dimensionless parameter (Ud/Dc)
is typically O(103) in this case, since the diffusivities in most fluids
is O(10−9) m2/s. Consequently, convective effects are large compared
to diffusive effects even at velocities as small as 1 mm/s, and convec-
tion is important. However, as noted earlier, even when the ratio of
convection and diffusion is large (high Peclet number), diffusion can-
not be neglected since convection only transports material tangential
to the particle surface, and not in the normal direction. The ratio of
adsorption and diffusion, kad

2/Dc, is O(1000), and so reaction is fast
compared to diffusion. Consequently, diffusion is the rate limiting step
and reaction at the particle surface is instantaneous.

Clearly, since convection is an important effect, the height required
for effecting the necessary conversion will depend on the velocity U .
To determine this without a knowledge of the microscopic processes
occurring in the bed, it is necessary to carry out experiments with
beds of various heights and speeds, and to find out the height required
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for 99 % conversion as a function of the speed U. Clearly, this is a
difficult task. However, this task can be rendered much simpler using
the following physical reasoning.

Since the height of the bed is large compared to the particle diameter,
the microscopic processes that result in the adsorption of the solute
are insensitive to the total height, but depend only on the local con-
centration and velocity of the fluid. Consequently, the variation in
concentration with height of the bed can be related to the variation in
concentration with time of a thin layer of carbon through which the
effluent is circulated. The height required for conversion in the bed H
is related to the time required for conversion in the recirculating bed
τ by the relation H = (Uτ). Consequently, it is necessary to do the
experiment in the thin carbon layer for different velocities U , and de-
termine the conversion time τ as a function of U . Using this, one can
obtain H as a function of U .

The experiments in these circulating systems have been carried out,
and they reveal that the time required for 99 % conversion typically
vary as U−1/2. For typical systems with a rate of diffusion 10−9 m2/s,
the relationship is τ = cU−1/2, where U is in m/s, and the coefficient
c has a numerical value of O(100) with units m1/2 s1/2. Consequently,
the height required for the bed is H = cU1/2, which for a velocity of
1mm/s is about 3.16 m.

2 Diffusion

1. The mean free path is given by the expression,

λ =
1

2
√

πnd2

where n is the number of molecules per unit volume and d is the molec-
ular diameter. The number of molecules per unit volume is given by

n =
p

kT

where the Boltzmann constant k = 1.3807 × 10−23J/K. This gives
n = 2.4143× 1025 molecules per cubic meter at T = 300K and p = 105
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Pa. Using this, the mean free path of hydrogen is 1.097× 10−7 m, and
that of chlorine is 6.900 × 10−8 m. The ratio of mean free path and
molecular diameter is 376 for hydrogen, and 134 for chlorine.

The mean molecular velocity is given by,

ū =

√

8kT

πm

where m is the molecular mass. The molecular mass for hydrogen
is 2/(6.023 × 10−26) = 3.3206 × 10−27kg, while that for chlorine is
71/(6.023 × 10−26) = 1.179 × 10−25kg. Therefore, the mean molecular
velocities for hydrogen and chlorine are 1782m/s and 299m/s.

In kinetic theory, the viscosity is given by,

µ =
1

3
nmūλ

The values for hydrogen and chlorine are 6.549×10−6kg/m/s and 1.958∗
10−5kg/m/s.

2. The viscosity of pure nitrogen and oxygen, calculated as above, are
1.226 × 10−5 and 1.507 × 10−5 kg/m/s respectively.

3. The Knudsen number is the ratio of Mach and Reynolds numbers.

4. The mass flux at a surface is given by,

j = aurmsc

where a is a constant, urms is the root mean square velocity and c is the
concentration. If the concentration is uniform and there is a gradient
in the root mean square velocity, then the flux will be given by,

j = aλc
∂urms

∂x

This can be simplified to obtain,

j = aλc
√

3k2Tm
∂T

∂x
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5. The Stokes-Einstein formula states that

D =
kT

6πµR

where R is the radius. If we assume that the viscosity of water is
10−3kg/m/s, the radius of haemoglobin is 3.18471 × 10−9m.

6. The diffusion coefficients of hydrogen, oxygen and benzene are 1.5077×
10−9, 1.28019 × 10−9 and 8.33948 × 10−10 m2/s respectively.

3 Unidirectional flow in Cartesian co-ordinates:

1. • The mass and momentum equations for this velocity profile reduce
to:

∂ux

∂x
= 0 (8)

ρ
∂ux

∂t
= −∂p

∂x
+ µ

∂2ux

∂y2
(9)

∂p

∂y
= 0 (10)

The boundary conditions are:

ux = 0 aty = 0 (11)

ux = V (t) aty = H (12)

In addition since the ends are closed, there should be no net flux
of fluid across any cross section. For this, we require:

∫ H

0

dyux = 0 (13)

• For a steady flow, the time derivation can be neglected in the
momentum equation 9 and the solution is:

ux =
∂p

∂x

y2

2
+ C1y + C2 (14)
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The boundary 11 requires that C2 = 0 and the two other condi-
tions 12 and 13 give the following equations:

1

µ

∂p

∂x

H2

2
+ C1H = V (15)

1

µ

∂p

∂x

H3

6
+

C1H
2

2
= 0 (16)

The above equations can be solved to obtain:

∂p

∂x
=

6µV

H2
(17)

ux =
3V y2

H2
− 2V y

H
(18)

• In the presence of an oscillating top plate V cos (ωt), we would
expect the velocity profile also to be oscillating because this is a
linear problem. So we can choose the velocity ux and pressure p
as:

ux = ũ(y) exp (iωt) p = p̃(y) exp (iωt) (19)

Inserting this into the momentum equation 9, we obtain:

ρıωũ = −∂p̃

∂x
+ µ

∂2ũ

∂y2
(20)

The solution for this equation is:

ũ =
ı

ρω

∂p̃

∂x
+ C1 exp (

√

ıρω/µy) + C2 exp (−
√

ıρω/µy) (21)

The boundary conditions 11 and 12 give:

C1 + C2 +
ı

ρω

∂p̃

∂x
= 0 (22)

C1 exp (
√

ıρω/µH) + C2 exp (−
√

ıρω/µH) +
ı

ρω

∂p̃

∂x
= V (23)

µ

ıρω

[

C1

(

exp (
√

ıρω/µH) − 1
)

− C2

(

exp (−
√

ıρω/µH) − 1
)]

+
ıH

ρω

∂p̃

∂x
= 0

(24)
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2. The non-dimensional temperature field is defined as T ∗ = (T−T0)/(T1−
T0). In terms of this temperature field, the boundary conditions are,

T ∗ = 1 at x = 0 (25)

T ∗ = 0 at x = L (26)

T ∗ = 0 at y = 0 (27)

T ∗ = 0 at y = H (28)

The solutions of the heat conduction, which satisfy the homogeneous
boundary conditions in the y direction, are,

T ∗ =

∞
∑

n=1

sin (nπy/H)(An exp (nπx/H) + Bn exp (−nπx/H) (29)

From the boundary condition T ∗ = 0 at x = L, we obtain one of the
coefficients in the above equation,

T ∗ =
∞
∑

n=1

An sin (nπy/H)(exp (nπx/H) − exp (nπ(2L − x)/H)) (30)

The coefficients An can be determined from the orthogonality relation
at x = 0,

∞
∑

n=1

An

∫ H

0

dy sin (mπy/H) sin (nπy/H)(1 − exp (2nπL/H)) =

∫ H

0

dy sin (mπy/H)(31)

This equation reduces to,

Am =
4

mπ
(1 − exp (2nπL/H))−1 for odd n

= 0 for even n (32)

Therefore, the solution for the temperature field is,

T ∗ =
∞
∑

n=1,3,...

(

4

nπ

)

sin (nπy/H)(exp (nπx/H) − exp (nπ(2L − x)/H))

(1 − exp (2nπL/H))

(33)
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The heat flux from the surface can be calculated as the flux in the x
direction at x = 0,

qx = k(T1 − T0)

(

dT ∗

dx

)

x=0

= k(T1 − T0)

∞
∑

n=1,3,...

4 sin (nπy)

nπ

nπ

H

(1 + exp (2nπL/H))

1 − exp (2nπL/H)
(34)

The total heat flux (per length in the direction perpendicular to the
plane of the rectangle) is,

Q =

∫ H

0

dyqx

= k(T1 − T0)
∞
∑

n=1,3,...

4

nπ

2H

nπ

nπ

H

(1 + exp (2nπL/H))

1 − exp (2nπL/H)
(35)

3. It is convenient to use a scaled temperature Θ = (T − T0)/(T1 − T0).
The boundary conditions are,

Θ = 0 at y = 0 (36)

Θ = 0 at y = L (37)

Θ = 1 at x = 0 (38)

Θ = 0 at x → ∞ (39)

The conduction equation for the temperature field is,

∂2Θ

∂x2
+

∂2Θ

∂y2
= 0 (40)

This is solved by separation of variables, Θ = X(x)Y (y). The solution
in the y direction is easily obtained,

Y (y) = sin
(nπy

L

)

(41)

where n is an integer. The solution in the x direction is, which goes to
zero as x goes to infinity, is,

X(x) = exp
(nπx

L

)

(42)
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Therefore, the final solution is given by,

Θ =
∑

n

An sin
(nπy

L

)

exp
(

−nπx

L

)

(43)

The constants in the above equation can be obtained from the con-
sideration that Θ = 1 at x = 0. Multiplying Θ by sin (mπx/L) and
integrating over x, we obtain

∫ L

0

dy sin
(mπy

L

)

∑

n

sin
(nπy

L

)

=

∫ L

0

dx sin
(mπx

L

)

(44)

Simplifying both sides, we get,

AmL

2
=

2L

πm
for odd m

= 0 for even m (45)

Therefore, the final solution is,

Θ =
∑

oddn

4

πn
sin
(nπy

L

)

exp
(

−nπx

L

)

(46)

The heat flux at the surface x = 0 is given by,

q = −K
dT

dx

∣

∣

∣

∣

x=0

=
4K(T1 − T0)

L

∑

oddn

sin
(nπy

L

)

(47)

The total heat transported is obtained by integrating the heat flux over
the y co-ordinate,

Q =
4K(T1 − T0)

L

∑

oddn

∫ L

0

dy sin
(nπy

L

)

=
4K(T1 − T0)

L

∑

oddn

2L

nπ
(48)
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4. If x is the co-ordinate along the length of the channel, the equation of
motion is,

−∂p

∂x
+ µ

(

∂2ux

∂x2
+

∂2ux

∂y2

)

= 0

The boundary conditions are ux = 0 at y = 0, W and z = 0, H . The
solution is of the form,

ux =
∑

m,n

Amn sin (mπy/W ) sin (nπz/H)

The constants Amn are determined by inserting the above into the
equation of motion,

∑

m,n

Amn sin (mπy/W ) sin (nπz/H)
(

(m2π2/W 2) + (n2π2/H2)
)

= −∂p

∂x

To obtain the constants, we use the orthogonality conditions, where
both sides or the above equation area multiplied by sin (mπy/W ) sin (nπz/H)
and integrated over 0 < y < W and 0 < z < H,

Amn =

(

−∂p

∂x

)

4

nmπ2

(

(m2π2/W 2) + (n2π2/H2)
)

−1

for odd n and m.

5. First, note that there is no variation in the z direction, because the flux
on the two walls perpendicular to the z co-ordinate are zero. Therefore,
the temperature is a function of x and y alone. The heat conduction
equation at steady state is,

∂2T

∂x2
+

∂2T

∂y2
= 0 (49)

First, we can make the temperature in the y direction homogeneous by
defining a new temperature Θ = T − (TC +(TD −TC)(y/L)). Then the
temperature on the two faces y = 0 and y = L are Θ = 0. We can now
use separation of variables for the temperature Θ,

Θ = X(x)Y (y) (50)
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The differential equation for X and Y now become,

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
(51)

Since the left side is only a function of x and the right side is only
a function of y, these are both equal to constants. We now need to
decide whether the constant is positive or negative. Note that the
homogeneous boundary conditions are in the y direction, so we should
expect sine and cosine solution in that direction. Therefore, it is best
to take the constant to be positive, α2. In this case, the solution for Y
is,

Y = A sin (αy) + B cos (αy) (52)

The condition Y = 0 at y = 0 implies that B = 0. The second
condition, Y = 0 and x = L, fixes the value of α to be (nπ/L), where
n is an integer. Therefore, the solution for Y is,

Y = A sin (nπy/L) (53)

The equation for the x direction is, then,

d2X

dx2
= (nπ/L)2X (54)

The solution for this is,

X = An exp (nπx/L) + Bn exp (−nπx/L) (55)

Therefore, the final solution for the temperature field is,

Θ =
∑

n

(An exp (nπx/L) + Bn exp (−nπx/L)) sin (nπy/L) (56)

The boundary conditions are,

Θ = TA − (TC + (TD − TC)(y/L)) atx = 0

Θ = TB − (TC + (TD − TC)(y/L)) atx = L (57)

Written in terms of the solutions for Θ, we find,
∑

n

(An + Bn) sin (nπy/L) = TA − (TC + (TD − TC)(y/L))

∑

n

(An exp (nπ) + Bn exp (−nπ)) sin (nπy/L) = TB − (TC + (TD − TC)(y/L))(58)
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These equations are solved using the orthogonality relations,

∫ L

0

dx sin (nπx/L) sin (mπx/L) = (L/2)δnm (59)

Therefore, we multiply the equations for the boundary conditions by
sin (nπx/L) and integrate from 0 to L, to obtain,

(L/2)(Am + Bm) = (TA − TC)(1 + (−1)m−1)(L/mπ)

+(TD − TC)((−1)m−1L/nπ)

(L/2)(Am exp (mπ) + Bm exp (−mπ)) = (TB − TC)(1 + (−1)m−1)(L/mπ)

+(TD − TC)((−1)m−1L/nπ)

(60)

These equations can be solved to obtain the solutions for Am and Bm.

6. The rate of dissipation of energy due to fluid friction will be calculated
later when we derive the mass, momentum and energy balance equa-
tions for a fluid. For a laminar shear flow where the velocity is in the
x direction and the velocity variation is in the z direction, the rate of
dissipation of energy (per unit volume per unit time) is given by,

Se = τxy
dux

dz

= µ

(

dux

dz

)2

(61)

where τxy is the shear stress, and (dux/dy) is the strain rate. Using
this velocity profile, we find that the dissipation rate per unit volume,
Se, is,

Se = 16U2

(

z

H
−
( z

H

)2
)2

(62)

At steady state, the energy balance equation reduces to,

k
d2T

dz2
+

16µU2

H2

(

1 − 2z

h

)2

= 0 (63)
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The boundary conditions are,

T = T0 at z = 0 (64)

T = T0 at z = H (65)

It is natural to define a scaled z co-ordinate, z∗ = (z/H), and a scaled
temperature, T ∗ = ((T −T0)/T0). Defined this way, the scaled temper-
ature is the ratio of the local temperature rise due to viscous heating
and the wall temperature. With this non-dimensionalisation, the en-
ergy balance equation becomes,

d2T ∗

dz∗2
+ 16Br(1 − 2z∗)2 = 0 (66)

with boundary conditions,

T ∗ = 0 at z∗ = 0 (67)

T ∗ = 0 at z∗ = 1 (68)

where the Brinkman number is,

Br =
µU2

kT0
(69)

Equation 66 can be easily solved, subject to boundary conditions 67
and 68, to obtain,

T ∗ = Br

(

8z∗(1 − z∗)(1 − 2z∗ + 2z∗2)

3

)

(70)

The profile of the scaled temperature, divided by Br, is shown as a
function of the scaled z co-ordinate in figure 6. The temperature profile
is very flat at the center of the channel, because the strain rate (dux/dz)
decreases to zero at the center, and the rate of generation also decreases
to zero. The rate of generation of heat is a maximum near the wall,
where the strain rate is a maximum.

From equation 70 for the temperature profile, the fractional increase in
the temperature within the channel is given by the Brinkman number.
For Br ≪ 1, the temperature rise in the channel is small compared
to the wall temperature, and so change in temperature due to viscous
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Figure 1: The ratio (T ∗/Br) of the scaled temperature T ∗ = ((T − T0)/T0),
as a function of z∗ a channel.
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heating can be neglected. Viscous heating also results in a flux of
energy across the wall of the channel, which is given by,

qz = −k
dT

dz

= −kT0

H

dT ∗

dz∗

=
8kT0(1 − 2z∗)3Br

3H

=
8µU2(1 − 2z∗)3

3H
(71)

The heat flux is negative at the bottom surface at z∗ = 0, because heat
is transferred downwards from the fluid to the wall. At z∗ = 1, the
heat flux is positive because heat is transferred upwards to the wall. In
both cases, the magnitude of the heat flux is given by (8µU2/3H).

4 Unidirectional flow in curvilinear co-ordinates:

1. The momentum eqution, obtained by shell balances, has the form,

−∂p

∂z
+

1

r

∂

∂r

(

r
∂uz

∂r

)

= 0

Since there is no pressure gradient in the z direction, the velocity profile
is obtained by solving the above equation with (∂p/∂z) = 0. The
solution of this equation is,

uz = C1 log (r) + C2

The boundary conditions are uz = U at the surface of the wire r = Rw,
while uz = 0 at the surface of the tube r = Rt.

uz =
U log (Rt/r)

log (Rt/Rw)

The total flow rate is determined by integrating the above equation
from Rt to R2,

Q = 2π

∫ Rt

Rw

rdruz = π(R2
t − R2

w − 2R2
w log (Rt/Rw))U/2 log (Rt/Rw)
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2. The heat conduction equation will have the form

∂T

∂t
= DT

(

1

r

d

dr
r
dT

dr

)

(72)

One of the boundary conditions are that T → T0 in the limit r →
∞. The other boundary condition is a flux condition. The total heat
transmitted, per unit length, of the wire is Q. Therefore, the flux from
a cylindrical surface of radius r is Q/(2πr). Therefore, the requirement
at the wire surface, in the limit r → 0, is that

−K
dT

dr
=

Q

2πr
(73)

where Q is a constant.

To solve for the temperature field, note that there is no length scale in
the problem (the wire is infinitesimal in thickness, and the boundaries
are at infinity). Therefore, a similarity solution can be used with the
similarity variable y = (r/

√
Dt). The heat conduction equation, in

terms of this variable, is

d2T

dy2
+

(

1

y
+

y

2

)

dT

dy
= 0 (74)

This equation can be solved to obtain the

dT

dy
=

C

y
exp (−y2/4) (75)

The temperature can be obtained by integrating the above equation
with respect to y, and realising that T = 0 as y → ∞.

T =

∫ y

∞

dy′
C

y′
exp (−y′2/4) (76)

The constant C can be determined from the flux condition, in the limit
r → 0(y → 0),

dT

dr
= − Q

2πrK
(77)

When expressed in terms of y, this is equivalent to

dT

dy
= − Q

2πKy
(78)

Therefore, C = −(Q/2πK).
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3. For the case vr = 0 and vz = 0, the θ momentum equation is given by:

∂vθ

∂t
= − ν

r2

∂(rvθ)

∂r
+

ν

r

∂2(rvθ)

∂r2
(79)

and the boundary conditions are:

At r = 0 vθ = 0

For r → ∞ vθ =
Γ

2πr

At t = 0 and r > 0 vθ =
Γ

2πr

(80)

Since vθ is dependent on r, it is convenient to use a new variable γ =
vθ/(Γ/2πr). γ is called the ‘circulation’. The equation for the variable
γ becomes:

∂γ

∂t
= −ν

r

∂γ

∂r
+ ν

∂2γ

∂r2
(81)

with the boundary conditions:

At r = 0 γ = 0
For r → ∞ γ = 1

At t = 0 and r > 0 γ = 1
(82)

A similarity solution can now be used, since there are no length or time
scales in the problem other than r, t and ν. The dimensionless variable
η is defined as:

η =
r√
νt

(83)

and γ = γ(η). The differential equation for γ in terms of η is given by:

d2γ

dη2
+

(

η

2
− 1

η

)

dγ

dη
= 0 (84)

with the boundary conditions:

At η = 0 γ = 0
For r → ∞ γ = 1

(85)

This can be easily solved to give:

γ = [1 − exp (−η2/4)] vθ =
Γ

2πr

[

1 − exp

(

r2

4νt

)]

(86)
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4. The equation for the temperature field is,

ρCv
∂T

∂t
=

k

r

∂

∂r

(

r
∂T

∂r

)

+
4µU2r2

R4

The scaled r co-ordinate and time are defined as r∗ = (r/R) and t∗ =
(αt/R2), where α = (k/ρCv) is the thermal diffusivity, to provide,

∂T

∂t∗
=

1

r∗
∂

∂r∗

(

r∗
∂T

∂r∗

)

+
4µU2r∗2

k

From the above equation, it is appropriate to define a scaled tempera-
ture as T ∗ = (k(T − T0)/µU2), so that the scaled temperature is zero
at the walls. With this, the equation for the scaled temperature field
becomes,

∂T ∗

∂t∗
=

1

r∗
∂

∂r∗

(

r∗
∂T ∗

∂r∗

)

+ 4r∗2

At steady state, this equation can be easily solved to obtain,

T ∗ = 1 − r∗4

4

or

T − T0 =
µU2

4k

(

1 − r4

R4

)

If there is an unsteady forcing of the type U(t) = U cos (ωt), then the
heat generated per unit area per unit time can be written as,

Q =
4µU2r2 cos (ωt)2

R4

This is converted into two parts, a steady and an oscillatory part,

Q =
2µU2r2

R4
(1 + cos (2θ))

Therefore, we obtain solutions with two inhomogeneous terms, a steady
term

Qs =
2µU2r2

R4
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for which the temperature field is,

T − T0 =
µU2

8k

(

1 − r4

R4

)

The second part is obtained by solving the equation with the inhomo-
geneous term,

Q∗

t =
2µU2r2

R4
exp (2ıωt)

and taking the real part of the solution. For this, we define the tem-
perature field as (T − T0) = T̃ (r) exp (2ıωt). This is inserted into the
conservation equation to obtain,

ρCvıωT̃ =
k

r

∂

∂r

(

r
∂T̃

∂r

)

+
2µU2r2

R4

We use the same scalings r∗ = (r/R), t∗ = (tα/R2) and T̃ ∗ = (kT̃ /µU2)
as before, to obtain,

∂2T̃ ∗

∂r∗2
+

1

r∗
∂T̃ ∗

∂r∗
+ 2r∗2 − 2ıPeωT̃ = 0

where Peω = (R2ω/α) is the Peclet number based on the frequency of
the base flow. This is easily solved to obtain the general solution and
particular integral. The general solution is,

T̃ ∗

g = C1J0(
√

−2ıPeωr∗) + C2Y0(
√

−2ıPeωr∗)+

while the particular integral is,

T̃ ∗

p = − ır∗2

Peω
− 2

Pe2
ω

The constant C2 in the general solution is zero since the general solution
has to be finite at the origin. Therefore, the final solution which satisfies
the boundary condition T̃ ∗ = 0 at r∗ = 1 is,

T̃ ∗ =

(

− ı

Peω

− 2

Pe2
ω

)(

1 − J0(
√
−2ıPeωr∗)

J0(
√
−2ıPeω)

)

+
ı(1 − r∗2)

Peω

Therefore the final transient temperature field is,

Tt−T0 =
µU2

k
Real

(

exp (2ıωt)

(

− ı

Peω

− 2

Pe2
ω

)(

1 − J0(
√
−2ıPeωr∗)

J0(
√
−2ıPeω)

)

+
ı(1 − r∗2)

Peω

)
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5. The appropriation coordinate system is the cylindrical coordinate sys-
tem, in which the z axis is along the axis of the cylinder. Thus, the
boundaries of the cylinder are 0 ≤ r ≤ R and 0 ≤ z ≤ H , while the φ
coordinate varies between 0 and 2π. The only non-zero component of
the velocity is the uφ component. The boundary conditions for uφ are,

uφ = Ω at r = R

uφ = 0 at z = 0

uφ = 0 at z = H (87)

The mass conservation equation obtained using a shell balance, is,

∂ρ

∂t
+

1

r

∂(ρur)

∂r
+

1

r

∂(ρuφ)

∂φ
+

∂(ρuz)

∂z
= 0 (88)

Since the density is a constant, and uφ is the only non-zero component
of the velocity, the mass conservation equation reduces to

∂uφ

∂φ
= 0 (89)

Therefore, the velocity is independent of the φ coordinate.

The momentum conservation equation in the φ direction, using shell
balances, will reduce to,

∂uφ

∂t
= −1

r

∂p

∂φ
+ ν

∂

∂r

(

1

r

∂(uphir)

∂r
+

∂2uφ

∂z2

)

(90)

This equation can be simplified by taking one derivative with respect
to φ. Since (∂uφ/∂φ) = 0 from the mass conservation condition, we
find that

∂2p

∂φ2
= 0 (91)

This equation has a solution of the form,

p = C1(r, z)φ + C2(r, z) (92)

However, we require that the pressure should have the same value at φ
as it has at (φ+2π), since these are the same points in space. Therefore,
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the pressure is only a function of (r, z), and is independent of φ. With
this, the momentum balance equation reduces to,

∂uφ

∂t
= ν

∂

∂r

(

1

r

∂(ruφ)

∂r

)

+
∂2uφ

∂z2
(93)

At steady state, the equation reduces to,

ν
∂

∂r

(

1

r

∂(ruφ)

∂r

)

+
∂2uφ

∂z2
= 0 (94)

This solved using the method of separation of variables, where we write
uφ = R(r)Z(z). Inserting this into the above equation, and dividing
throughout by RZ, we get

(

1

R

∂

∂r

(

1

r

∂(ruφ)

∂r

)

+
1

Z

∂2uφ

∂z2

)

= 0 (95)

Since the first term is only a function of r, and the second term is only
a function of z, these two are individually equal to constants. First, we
solve the equation for Z,

1

Z

d2Z

dz2
= −λ2 (96)

This has solutions

Z = A sin (λz) + B cos (λz) (97)

Since Z = 0 at z = 0, we require B = 0. Also, since Z = 0 at z = H ,
the solution for Z is

Z = An sin (nπz/H) (98)

Since Z = 0 at z = 0, we require B = 0. Also, since Z = 0 at z = H ,
the solution for Z is

Z = An sin (nπz/H) (99)

where n is an integer. The equation for the radial coordinate is given
by,

d2R

dr2
+

1

r

dR

dr
− R

r2
= λ2

n =
(nπ

H

)2

(100)
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This equation can be simplified to obtain,

d2R

dr2
+ r

dR

dr
− λ2

nr
2R = 0 (101)

The solution of this equation, which is finite at the origin, is,

R = J0(ıλnr) (102)

Therefore, the final solution is of the form,

uφ =

∞
∑

n=0

AnJ1

( ınπr

H

)

sin
(nπz

H

)

(103)

In this equation, we have not yet enforced the boundary condition at
the surface of the sphere, uφ = Ω at r = R. This is enforced using the
orthogonality condition,

∫

dz sin (mπz/H) uφ|r=R =

∫

dz sin (mπz/h)Ω (104)

The left side of the above equation can be easily solved to give

AmJ1(ıλmR)

2
=

2

mπ
for odd m

= 0 for even m (105)

This completes the evaluation of the constants in the above equation.

6. The equation for the velocity is,

−∂p

∂z
+

µ

r

∂

∂r

(

r
∂vz

∂r

)

= 0

Since the pressure is not a function of r, the above equation can be
solved to obtain,

vz =
∂p

∂z

r2

2
+ C1 log (r) + C2

From the condition that the velocity is zero at Rs and U at Rp, the
constants in the above equation are,

vz = −∂p

∂z

(

−r2

4
+

R2
p log (r/Rs) − R2

s log (r/Rp)

r log (Rp/Rs)
+

U log (r/Rs)

log (Rp/Rs)
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The flow rate is determined from the condition,

Q =

∫ Rs

Rp

rdrvz = 0

This can be used to determine the relationship between the velocity
and pressure,

∂p

∂z
= − 4U(1 − R2

r + 2R2
r log (Rr))

(1 − R2
r)(1 − R2

r + (1 + R2
r) log (Rr)

7. The equation can be solved using separation of variables,

uz(r, θ) = R(r)T (θ) (106)

The equation in the θ direction is,

∂2T

∂θ2
= −n2π2

Θ2
(107)

with the boundary conditions,

T = 0atθ = −Θ, Θ (108)

The solution for this is,

T = sin (nπθ/Θ) (109)

where n is an integer to satisfy the boundary condition. The equation
for R then becomes,

r2 ∂2R

∂r2
+ r

∂R

∂r
+ r2KR − n2π2

Θ2
R = 0 (110)

If we define r∗ =
√

Kr, then the above equation reduces to,

r∗2
∂2R

∂r∗2
+ r∗

∂R

∂r∗
+

(

r∗2 − n2π2

Θ2

)

R = 0 (111)

The solution of this equation is,

R = AJm(r∗) + BYm(r∗) (112)
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where m = (nπ/Θ). The constant B is zero since Ym diverges at r∗ = 0.
Therefore, the final solution is,

uz =
∑

n

AnJm(
√

K/µr) sin (nπθ/Θ) (113)

The final boundary condition is uz = 0 at r = R.

0 =
∑

n

AnJm(
√

K/µR) sin (nπθ/Θ) (114)

This can be enforced using the orthogonality conditions.

8. The differential equation is,

∂T

∂t
=

α

r2

∂

∂r

(

r2∂T

∂r

)

(115)

with boundary conditions,

T → 0 for r → ∞ (116)

(

−k
∂T

∂r

)

(4πr2) = Q for r → 0 (117)

The similarity variable is η = (r/
√

αt). Expressed in terms of this
variable, the solution for the conservation equation becomes,

∂2T

∂η2
+

(

2

η
+

η

2

)

∂T

∂η
= 0 (118)

The solution of this is,

∂T

∂η
=

C

η2
exp (−η2/4) (119)

where C is the constant of integration.

The boundary conditions are,

T → 0 for η → ∞ (120)

(

−k
∂T

∂r

)

(4πr2) = Q for r → 0 (121)
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When expressed in terms of the similarity variable, the boundary con-
dition becomes,

η2∂2T

∂η2
= − Q

4πk
√

αt
(122)

Clearly, a solution is not possible unless Q is proportional to
√

αt.

9. Since the forcing far from the cylinder is of the form T = T ′r2 sin (2θ)/2,
the temperature everywhere has to be of the same form.

T =

(

T ′r2

2
+

A

r2

)

sin (2θ) + T0

At the surface, the temperature is T0, and so the boundary condition
is,

A = −(T ′R4/2)

The temperature field is,

T = T ′

(

r2

2
− R4

2r2

)

sin (2θ) + T0

The flux at the surface perpendicular to the surface is,

qr = −k
∂T

∂r
= 2RT ′ sin (2θ)

5 Mass and energy conservation equations:

1. (a) The coordinates in the two coordinate systems are related by

x = r cos (φ)

y = r sin (φ)

z = z (123)

r = (x2 + y2)1/2

tan (φ) = (y/x) (124)

The unit vectors in the cylindrical coordinate system are related
to those in the Cartesian coordinate system by

er = cos (φ)ex + sin (φ)ey

eφ = − sin (φ)ex + cos (φ)ey (125)
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(b) We consider a differential volume bounded by r and r +∆r in the
radial direction, by φ and φ + ∆φ in the azimuthal direction and
z and z +∆z in the axial direction. The widths of the differential
volume are (∆r, r∆θ, ∆z) in the three directions respectively. The
change in the concentration within the volume in a time ∆t is

(c(r, φ, z, t + ∆t) − c(r, φ, z, t)) (∆r)(r∆φ)∆z) (126)

The total input of solute into the volume through the surface at
r is given by

((cvr + jr)(r∆φ)(∆z))|r (127)

while the output of solute through the surface at (r + ∆r) is

((cvr + jr)(r∆φ)(∆z))|r+∆r (128)

The net accumulation of solute due to the flow through these two
surfaces is given by

((cvr + jr)(r∆φ)(∆z))|r − ((cvr + jr)(r∆φ)(∆z))|r+∆r =

(∆φ)(∆z)∆r

(

− ∂

∂r
(r(cvr + jr))

)

(129)

Similar expressions can be obtained for the net accumulation of
solute through the surfaces at φ and φ + ∆φ,

((cvφ + jφ)(∆r)(∆z))|φ − ((cvφ + jφ)(∆r)(∆z))|φ+∆φ =

(∆r)(∆z)

(

− ∂

∂φ
((cvφ + jφ))

)

(130)

and through the surfaces at z and z + ∆z,

((cvz + jz)(∆r)(r∆φ))|z − ((cvz + jz)(∆r)(r∆φ))|z+∆z =

(∆r)(r∆φ)(∆z)

(

− ∂

∂z
(cvz + jz)

)

(131)

Equating the rate of accumulation of mass to the sum of the
Input−Output, and dividing by the volume (∆r)(r∆φ)(∆z), the
equation for the concentration field is

∂c

∂t
= −1

r

∂

∂r
(r(cvr + jr)) −

1

r

∂(cvφ + jφ)

∂φ
− ∂(cvz + jz)

∂z
(132)
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This equation can be expressed in the form of the diffusion equa-
tion using the definition of the divergence operator ∇ in spherical
coordinates,

∇.A =
1

r

∂

∂r
(rAr) +

1

r

∂Aφ

∂φ
+

∂Az

∂z
(133)

The components of the fluxes in the three directions are related
to the variation of the concentration with position, which in the
spherical coordinate system is given by

jr = −D
∂c

∂r

jφ = −D
1

r

∂c

∂φ

jz = −D
∂c

∂z
(134)

When this is inserted into the diffusion equation, we obtain

∂c

∂t
+ ∇.(cv) = D∇2c (135)

where the Laplacian is defined as

∇2 =

(

1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂φ2
+

∂2

∂z2

)

(136)

(c) The solution for the Laplace equation can be obtained using sep-
aration of variables,

c = T (t)R(r)F (φ)Z(z) (137)

This is inserted into the conservation equation, which is then di-
vided by TRFZ, to obtain

1

T

∂T

∂t
= D

(

1

R

1

r

∂

∂r
r
∂R

∂r
+

1

F

1

r2

∂2F

∂φ2
+

1

Z

∂2Z

∂z2

)

(138)

Using separation of variables, we can infer that the left and right
sides of the above equation are individually equal to constants.
Setting

1

T

∂T

∂t
= −Dλ2 (139)
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so that T decays with time, the solution for T is

T = exp (−Dλ2t) (140)

The solution for F is obtained by setting

1

F

∂2F

∂φ2
= −m2 (141)

The solution for this is F = exp (ımφ), and m is required to be an
integer so that F (φ + 2π) = F (φ). The solution for Z is obtained
by setting

1

Z

∂2Z

∂z2
= −α (142)

The value of α is as yet undetermined, but we would require that
α is positive if we are solving for the concentration field inside a
finite domain in z, so that the solutions are cos and sin functions.
If we are solving in an infinite domain, then α would have to be
negative, so that we get exponentially decaying functions. So the
choice of the sign of α depends on the domain.

The solution for R is determined from

1

r

∂

∂r
r
∂R

∂r
− m2

r2
+ (α + λ2) = 0 (143)

This equation can be recast as

r2∂2R

∂r2
+ r

∂R

∂r
− r2(α − λ2) − m2 = 0 (144)

The solution for this equation is the combination of modified
Bessel functions,

R = C1Km((α − λ2)1/2r) + C2Im((α − λ2)1/2r) (145)

For a system at steady state, where λ = 0, the solutions for R
reduce to

R = C1Km(αr) + C2Im(αr) (146)
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6 Diffusive transport:

1. The Laplace equation in spherical co-ordinates is

1

r

∂

∂r
r
∂T

∂r
+

1

r2

∂2T

∂θ2
= 0 (147)

We use separation of variables T = R(r)F (θ) to write,

1

R

1

r

∂

∂r
r
∂R

∂r
+

1

r2

1

F

∂2F

∂θ2
= 0 (148)

The θ part of the equation is,

1

F

∂2F

∂θ2
= −m2 (149)

where m is an integer, since we have to get the same temperature if we
go around by an angle of (2π). Therefore, the solution is

F = exp (ımθ) (150)

The r part of the equation is,

r2∂2R

∂r2
+ r

∂R

∂r
− m2R = 0 (151)

This can be solved to obtain,

R = (rm, r−m) (152)

Therefore the final solutions are,

T =
∑

m

(Amrm + Bmr−m) exp (ımθ) (153)

2. The temperature due to a point source in two dimensions can be de-
termined by solving the conduction equation,

1

r

∂

∂r
r
∂T

∂r
= 0 (154)

The solution of this is,

T = C1 log (r) + C2 (155)
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The constant C1 can be determined from the condition that the total
flux coming out of the source is 1,

∫ 2π

0

r dθ

(

−K
∂T

∂r

)

= Q (156)

This provides the solution,

C1 = − Q

2π
(157)

Therefore, the solution is of the form,

T = − Q

2π
log (r) + C2 (158)

Note that it is not possible to apply boundary conditions at infinity for
this problem.

3. The Laplace equation for a cylindrical coordinate system is

K
1

r

∂

∂r
r
∂T

∂r
= δ(x) (159)

The right side of the above equation is zero for x 6= 0, and so the
solution for T is

T = C1 log (r) + C2 (160)

The constant C1 is determined from the flux condition

K

∫

dS
1

r

∂

∂r
r
∂T

∂r
=

∫

dSQδ(x) (161)

The right side of the above equation is just Q, while the left side is

2πK

∫

rdr
1

r

∂

∂r
r
∂T

∂r
= 2πKC1 (162)

Therefore, the solution for the temperature field due to a point source
is given by

T =
Q log (r)

2πK
+ T∞ (163)
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4. For a source and a sink of strength ±Q placed at x = ±L, the temper-
ature field is given by

T =
Q

4πK
[log ((x − L)2 + y2) − log ((x + l)2 + y2)]

=
Q

4πK
[log (x2 + y2 − 2xL + L2) − log (x2 + y2 + 2xL + L2)]

=
Q

4πK

[

log (x2 + y2) + log

(

1 +
−2xL + L2

x2 + y2

)

− log (x2 + y2) − log

(

1 +
2xL + L2

x2 + y2

)]

=
Q

4πK

4xL

x2 + y2

=
QL

πK

x

r2

=
QL

πK

cos (θ)

r
(164)

A similar calcultion can be carried out for a source and sink placed at
y = ±L to provide

T =
2QL

πK

sin (θ)

r
(165)

5. For two sources placed at (L, L), (−L,−L) and two sinks at (L,−L)
and (−L, L), the temperature field is given by

T =
Q

4πK

[

log ((x − L)2 + (y − L)2) + log ((x + L)2 + (y + L)2)

− log ((x − L)2 + (y + L)2) − log ((x + L)2 + (y − L)2)
]

(166)

The first logarithm in the above equation can be simplified as follows,

log ((x − L)2 + (y − L)2) = log (u + a) (167)

where

u = x2 + y2

a = −2xL − 2yL + 2L2 (168)

The log can be expanded in a Taylor series for a ≪ r,

log (u + a) = log (u) + a
d log (u)

du
+

a2

2

d2 log (u)

du2
(169)
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Using this, we get

log (u + a) = log (u) +
a

u
− a2

2u2

= log (x2 + y2) − 2L(x + y)

(x2 + y2)
+

2L2

(x2 + y2)
− 2L2(x + y)2

(x2 + y2)2

(170)

A similar expansion can be carried out for the other three terms, which
are, respectively,

log ((x + L)2 + (y + L)2)

= log (x2 + y2) +
2L(x + y)

(x2 + y2)
+

2L2

(x2 + y2)
− 2L2(x + y)2

(x2 + y2)2

log ((x − L)2 + (y + L)2)

= log (x2 + y2) − 2L(x − y)

(x2 + y2)
+

2L2

(x2 + y2)
− 2L2(x − y)2

(x2 + y2)2

log ((x + L)2 + (y − L)2)

= log (x2 + y2) +
2L(x − y)

(x2 + y2)
+

2L2

(x2 + y2)
− 2L2(x − y)2

(x2 + y2)2
(171)

Upon substituting this into the equation for the temperature field, the
first three contributions on the right side of the above equation will
cancel out, while the fourth term alone will give a non-zero contribution
when added up, to give,

T =
Q

4πK

−16L2xy

(x2 + y2)2

=
Q

4πK

−16L2 cos (θ) sin (θ)

r2

=
Q

4πK

−8L2 sin (2θ)

r2
(172)

The temperature field for the combination of sources at (L, 0) and
(−L, 0) and sink at (0, L) and (0,−L) can be carried out in a similar
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manner.

T =
Q

4πK

−4L2(x2 − y2)

(x2 + y2)2

=
Q

4πK

−4L2(cos (θ)2 − sin (θ)2)

r2

=
Q

4πK

−4L2 cos (2θ)

r2
(173)

The solution obtained by separation of variables for the steady tem-
perature field was

T =
∑

m

Amr−m exp (ımθ) (174)

The first solution, which is a log , does not agree with this, since it
is obtained by variation of parameters. However, the next two are in
agreement.

6. (a) The temperature field has to have the same symmetry as the tem-
perature field at infinity, which is T ′x = T ′r cos (θ). Therefore,
the temperature within and outside the cylinder have to be of the
form

To = T ′r cos (θ) +
Ao cos (θ)

r
Ti = Air cos (θ) (175)

The boundary conditions at the surface of the cylinder at r = R
are the equality of temperature and flux,

Ti = To

Ki
dTi

dr
= Ko

dTo

dr
(176)

Using these, we get the constants

Ai =
2T ′

1 + KR

Ao =
(1 − KR)R2T ′

1 + KR
(177)
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This gives the temperature field outside and inside the cylinder,

Ti =
2T ′r cos (θ)

1 + KR

To =

(

T ′r +
(1 − KR)R2T ′

(1 + KR)r

)

cos (θ) (178)

(b) The total flux can be separated into two parts, one due to the
flux through the matrix and the other due to the flux through the
cylinders,

〈je
x〉 = −Km

V

∫

matrix
dV

∂T

∂x
− Kp

V

∫

cylinders
dV

∂T

∂x

= −Km

V

∫

total
dV

∂T

∂x
− (Kp − Km)

V

∫

cylinders
dV

∂T

∂x

= −Km − N(Kp − Km)

V

∫

1 cylinder

∂T

∂x

= −Km − NVp

V
(Kp − Km)

2T ′

1 + KR

= −Km

(

1 +
2φ(KR − 1)

1 + KR

)

(179)

7. Choose a co-ordinate system in which the origin is located on the wall
at a distance L from the source. The position of the heat source is then
(0, 0, L), and the temperature field due to the heat source without the
wall would be,

T =
Q

4πk(x2 + y2 + (z − L)2)1/2
(180)

In the presence of a conducting wall, it is appropriate to put a heat
sink at a distance L below the wall, so that the heat flux lines are
perpendicular to the wall. The temperature is then,

T =
Q

4πk(x2 + y2 + (z − L)2)1/2
− Q

4πk(x2 + y2 + (z + L)2)1/2
(181)

In the presence of an insulating wall, it is necessary to put a heat source
at a distance L below the wall, so that the flux lines are parallel to the
wall.

T =
Q

4πk(x2 + y2 + (z − L)2)1/2
+

Q

4πk(x2 + y2 + (z + L)2)1/2
(182)
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If a fraction f is perpenducular to the wall and (1−f) is parallel to the
wall, it is necessary to put a heat source of strength (1−f)Q and a sink
of strength fQ, so that the total source is (1−2f)Q. The temperature
field is then

T =
Q

4πk(x2 + y2 + (z − L)2)1/2
+

(1 − 2f)Q

4πk(x2 + y2 + (z + L)2)1/2
(183)

8. The temperature field at a position (x, y, z) is given by,

T =

∫ 2π

0

dθ
Qa

((x − a cos (θ))2 + (y − a sin (θ))2 + z2)1/2
(184)

The temperature field along the z axis is,

T =
Q2πa

(a2 + z2)1/2
(185)

For z ≫ a, the temperature field decays as

T =
Q2πa

z
(186)

For z ≪ g, the temperature field is proportional to

T = 2πQ − πQz2

a2
(187)

7 Convection-dominated transport:

1. The energy conservation equation is of the form,

kx1/2 ∂T

∂x
= α

(

∂2T

∂x2
+

∂2T

∂y2

)

If we scale x and y by L, we obtain,

kL3/2

α

√
x∗

∂T

∂x∗
=

(

∂2T

∂x∗2
+

∂2T

∂y∗2

)
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Therefore, the Peclet number is (kL3/2/α). When this number is large,
we scale the y co-ordinate by y∗ = (y/δ). The differential equation now
becomes,

kδ2

αL1/2

√
x∗

∂T

∂x∗
=

(

δ2

L2

∂2T

∂x∗2
+

∂2T

∂y∗2

)

For convection and diffusion to be of equal magnitude, we require that,

δ2

L2
=

α

L3/2k
= Pe−1

To find a similarity solution, neglect streamwise diffusion to obtain,

kx1/2 ∂T

∂x
= α

∂2T

∂y2

Substitute η = (y/g(x)), and simplify to obtain,

−kx1/2yg′

g2

dT

dη
=

α

g2

d2T

dη2

Multiplying throughout by (g2/α) and simplifying, we obtain,

−kx1/2gg′

α
η
dT

dη
=

d2T

dη2

For a similarity solution, we require that

kx1/2gg′

α
= 1

This can be solved, with the condition g = 0 at x = 0, to obtain,

g =

√

4αx1/2

k

The solution for the differential equation in terms of the similarity
variable is,

T =

(

1 −
∫ y/g

0
exp (−η2/2)

∫

∞

0
exp (−η2/2)

)
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2. The convection-diffusion equation is,

Ay((n+1)/n) ∂T

∂y
= α

∂2T

∂y2

where

A =

(

−1

c

dp

dx

)1/n
n

n + 1

Substituting the similarity variable η = (y/g(x)), the above equation
becomes,

−(A/α)η((2n+1)/n)g((2n+1)/n) dg

dx

dT

dη
=

d2T

dη2

This has a similarity solution only for,

Ag((2n+1)/n)

alpha

dg

dx
= 1

or
A

α

n

3n + 1

dg((3n+1)/n)

dx
= 1

This gives the solution for the similarity variable,

g =

(

3n + 1

n

αx

A

)(n/(3n+1))

The equation for the temperature field is,

d2T

dη2
+ η((2n+1)/n) dT

dη
= 0

This can be solved to provide,

T = 1 −
∫ η

0
dx exp (−((3n + 1)/n)x((3n+1)/n))

∫

∞

0
dx exp (−((3n + 1)/n)x((3n+1)/n))

3. The scaled equations are of the form,

Pe(−(1−r∗2) cos (θ)
∂T

∂r∗
+(1+r∗2) sin (θ)

∂T

∂θ
=

(

1

r∗
∂

∂r∗

(

r∗
∂T

∂r∗

)

+
1

r∗2
∂2T

∂θ2

)

(188)
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where r∗ = (r/R), and the Peclet number is UR/α.

In the thin boundary layer at the surface of the cylinder, we can define
the scaled co-ordinate y as δy = (1−r∗), where δ is the boundary layer
thickness. In the leading order approximation in δ, the conservation
equation becomes,

Pe(2y cos (θ)
∂T

∂y
+ 2 sin (θ)

∂T

∂θ
) =

1

δ2

∂2T

∂y2
(189)

Clearly, for a balance between the right and left sides of the equation,
we require δ = Pe−1/2. With this, the equation becomes,

2(y cos (θ)
∂T

∂y
+ sin (θ)

∂T

∂θ
=

∂2T

∂y2
(190)

Alternatively, if we assume x = cos (θ), we obtain,

2(yx
∂T

∂y
− (1 − x2)

∂T

∂x
) =

∂2T

∂y2
(191)

In order to solve the equation, we use a similarity transform of the
type,

z =
y

g(x)
(192)

where z is a similarity variable. The equation for the temperature field
now becomes,

2

(

yx

g
+ (1 − x2)

yg′

g2

)

∂T

∂z
=

1

g2

∂2T

∂z2
(193)

where the prime denotes a derivative with respect to x. Multiplying
throughout by g2, and transforming from y to z, we get,

2z
∂T

∂z
(g2x + (1 − x2)gg′) =

∂2T

∂z2
(194)

Clearly, for a similarity solution to be valid, the function g has to satisfy
the equation,

g2x + (1 − x2)gg′ = 1 (195)
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This equation can be solved by expressing g2 = u, in which case the
equation for u becomes,

1 − x2

2
u′ + xu = 1 (196)

This equation can be solved by integrating factors, where the integrat-
ing factor for u is the solution of the homogeneous equation, (1 − x2).
Using this, the final solution for u is,

u = g2 = x +
1 − x2

2
log

(

1 + x

1 − x

)

(197)

With this transform, the equation for the temperature field becomes,

2z
∂T

∂z
=

∂2T

∂z2
(198)

The solution for the temperature field that satisfies all the boundary
conditions is,

T = 1 −
∫ z

0
dz′ exp (−z′2)

∫

∞

0
dz′ exp (−z′2)

(199)

4. Near the surface, we can assume that ux = U , the slip velocity, and
uy = − dU

dX
Y to satisy mass conservation. With this, the convection-

diffusion equation becomes,

U
∂T

∂x
− dU

dX
Y

∂T

∂Y
= α

∂2T

∂Y 2

Substituting η = Y/g(X), where g(X) is the boundary layer thickness,
the equation becomes,

−η
dT

dη

(

Ug

α

dg

dX
+

dU

dX

g2

α

)

=
d2T

dη2

A similarity solution exists if g(x) satisfies the equation,

(

Ug

α

dg

dX
+

dU

dX

g2

α

)

= 1
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The above equation can be solved using an integrating factor, g(X) =
f(X)/U(X), to obtain an equation for f(X),

d(f 2)

dX
= 2αU

This is integrated to obtain,

f =

√

α

∫ X

0

dX U(X)

This gives,

g(X) =

√

α
∫ X

0
dX U(X)

U(X)
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