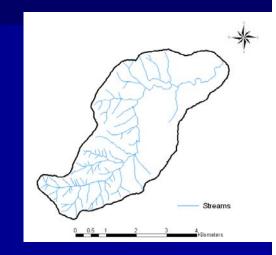
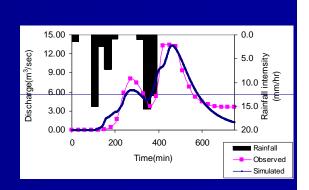


L15- Watershed Modeling


- Topics Covered
- Standard modeling approaches, System concept, Classifications, Black box model, Lumped model, Distributed model, Rainfall runoff modeling
- **Keywords:** Watershed modeling, System concept, black box model, lumped model, distributed model.



Watershed Model - Introduction

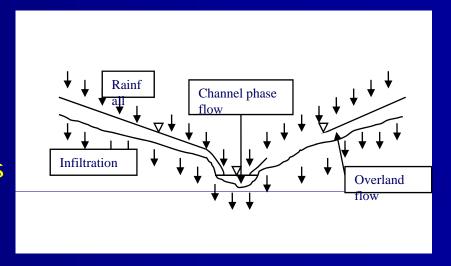
- Watershed models simulate natural processes of the flow of water, sediment, chemicals, nutrients, and microbial organisms & quantify the impact of human activities on these processes.
- Simulation of these processes plays a fundamental role in addressing a range of watershed based water resources, environmental, social & economical problems.

Watershed Model

- Main tool in addressing a wide spectrum of environmental and water resources problems
 - water resources planning, development, design, operation, and management; flooding; droughts; upland erosion; stream bank erosion; coastal erosion; sedimentation; nonpoint source pollution; water pollution from industrial, domestic, agricultural, and energy industry sources; migration of microbes; deterioration of lakes; desertification of land; degradation of land; decay of rivers; irrigation of agricultural lands; conjunctive use of surface and groundwater; reliable design of hydraulic structures and river training works etc.

System Approach

- System Approach: problems involves 3 steps;
- i) Describe the system involves modeling the watershed system; ii) Describe the objective function – normally stated in terms of economic terms (eg. Minimize flooding; iii) Optimize the system –
- Design problems classified: a) Long-run design of multiple purpose reservoir system – huge capital investment – benefits after & over a long time
 - Intermediate run irrigation & cultivation for a season
 - Short- run how much water to be released for flood control
- Each require hydrologic modeling
- Most situations alternative models
- Models: criteria accuracy, simplicity, consistency & sensitivity


Classification of Models

- Broadly classified into three types
- Black Box Models: models describe mathematically the relation between variables (eg. rainfall and surface runoff) without describing the physical process by which they are related. e.g. Unit Hydrograph approach; ANN; Rational formula etc.
- Lumped models: These models occupy an intermediate position between the distributed models and Black Box Models. e.g. Soil Conservation Curve number method, Stanford Watershed Model
- Distributed Models: These models are based on complex physical theory, i.e. based on the solution of real governing equation. Eg: Model based on unsteady flow St. Venant equations for watershed modeling.

Structure of Watershed Model

Simulation of process that takes place in watershed

- Aim: Gain better understanding of hydrologic phenomena operating in a watershed and how changes in watershed may affect these phenomena
- Watershed modeling steps:
- 1. Formulation
- 2. Calibration/verification
- 3. Application
- Watershed model constitutes
- 1. Input function
- 2. Output function
- 3. Transform function

Hydrologic Models - Types

Event vs. Continuous models

Event model: represents a single runoff event occurring over a period of time ranging from about an hour to several days

 Accuracy of the model output - Depend on the reliability of initial conditions

Continuous watershed model: will determine flow rates and conditions during both, runoff periods and periods of no surface runoff

- Initial conditions must be known or assumed
- Utilize runoff components: direct or surface runoff, shallow surface flow (interflow) and groundwater flow

An event model may omit one or both of the subsurface components and also evapotranspiration

Complete vs. Partial Models

Complete or comprehensive watershed models

- Solves the water balance equation
- Represents more or less all hydrologic processes
- Increases the accuracy of the model

Partial Models

- Represents only a part of the overall runoff process
- Ex: Water yield model gives runoff volumes but no peak discharges

Hydrologic Models – Types...

Calibrated Parameter vs. Measured Parameter Models:

Calibrated parameter model:

- One or more parameters that can be evaluated only by fitting computed hydrographs to the observed hydrographs
- Necessary If the watershed component has any conceptual component models
- Period of recorded flow is needed for estimating parameter values

Measured parameter model:

- Determination of parameters from known watershed characteristics
- Area and channel length Maps and channel cross sections measured in the field
- Usually applied to totally ungauged watersheds

Hydrologic Models – Types...

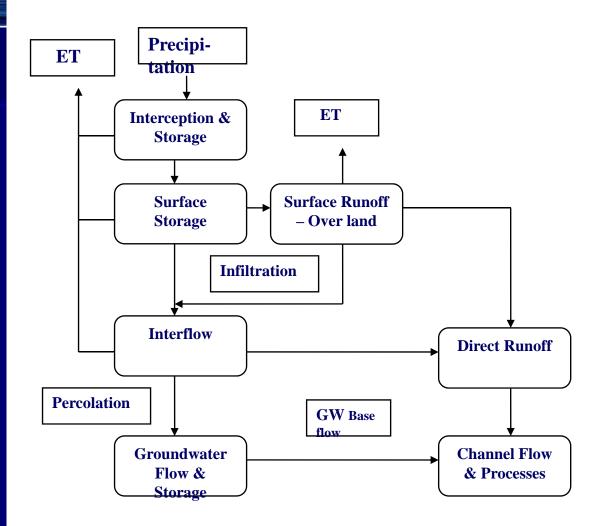
Lumped vs. Distributed Models

Lumped models

- Implicitly take into account the spatial variability of inputs, outputs, or parameters
- Utilize average values of the watershed characteristics affecting runoff
- lead to significant error- due to nonlinearity and threshold values

Distributed models

- Include spatial variation in inputs, outputs, and parameters.
- Division of watershed area into a number of elements and calculation of runoff volumes for each element



NATERSHED MANAGEMENT **Hydrologic Models** Stochastic Hydrologic models Deterministic Distributed Empirical model Lumped Semi distributed 12 Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

Hydrologic Modeling

Flowchart of simple watershed model (Based on: McCuen, 1989)

Watershed Simulation Analysis

Model selection criteria

- Assumptions & conceptualization
- Ability of model to predict variables required by the project
- Hydrologic processes that need to be modeled to estimate the desired outputs adequately (single-event or continuous processes)
- Availability of input data
- Expertise available & computational facility
- Price

Watershed Simulation Analysis

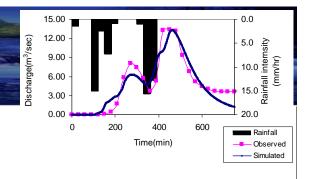
Steps:

- Selection of model
- Input data collection: rainfall, infiltration, physiography, land use, channel characteristics etc
- Evaluate the study objectives under various watershed simulation conditions
- Selection of methods for obtaining basin hydrographs and channel routing
- Calibration and verification of model
- Model simulations for various conditions
- Sensitivity analysis
- Evaluate usefulness of model and comment on needed changes.

Estimation of Surface Runoff

- Empirical Equations:
- Rational method (Empirical model)

$$Q=C i A$$
 or $q=0.0028 C i A$


where, q=design peak runoff rate m3/s; C=Runoff coefficient;

i=rainfall intensity (mm/hr) for design return period and for a duration equal to time of concentration of the watershed;

A=watershed area in ha; C= Runoff coefficient (rate of peak runoff rate to rainfall intensity, (dimensionless)); C varies as per slope, land use etc. e.g. available -- 0.3 to 0.6 (0-5 % slope); - 0.1 to 0.3(0-5 % slope).

Watershed of different characteristics:

$$C = \frac{C_1 A_1 + C_2 A_2 + C_3 A_3}{A}$$
$$A = A_1 + A_2 + A_3$$

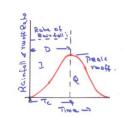
Rational Method

- Assumptions: Rainfall occurs at uniform intensity, Tcequal to the time of concentration of watershed
- Rainfall occurs at the uniform intensity over whole area
- Max. runoff is directly proportional to rainfall intensity
- Peak discharge probability is same as rainfall probability
- Runoff coefficient does not change with storm type
- Time of concentration: It is the time needed for water to flow from the most hydrological distant point in the watershed to the outlet once the soil has become saturated and minor depressions filled
 - When duration of rainfall storm equals time of concentration, all parts of watershed contribute simultaneously to the runoff at the outlet

Service of Transfer

Surface detention

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay



Rational Method...

- Kirpich (1940) formula for Tc where, T_c- in minutes
 L- Max. length of flow in m
 S_g- Watershed gradient in m/m (difference between outlet and most remote point divided by length L
- Modified Kirpich equation: Where, L_o -Length of overland flow in m S_o Slope along path in m/m $T_c = 0.0195 L^{0.77} S_g^{-0.385} + 0.0195 L^{0.7$

$$Tc = 0.0195L^{0.77}S_g^{-0.385}$$

- Eg: Poor grass, cultivated raw crops n=0.2; smooth impervious n=0.02
- Rational method limited to area less than 800 Ha

Other Empirical Equations

Dicken's formula:

$$Q = CA^{0.75}$$

where, Q→ Peak rate of surface runoff in m³/s
A→ Area in km²; C→ Coefficient e.g. 11.45 for annual rainfall: 610 to 1270 mm

Ryve's formula:

$$Q = CA^{0.67}$$

 Same Q and A and C varies from 6.76 to 40.5 depending on location of watershed (suitable for South India)

Based on practical experience and long term observations

Other Empirical Equations

Cook's method

- Evaluated by relief, soil infiltration, vegetation cover and surface storage
- Approximate weightage are aligned for those parameters

$$Q = P R F S$$

Where, Q→ Peak runoff for specific region;

- P→ Peak runoff from groups;
- R -> Geographic rainfall factor from groups
- F > Return period from groups;
- S > shape factor from Table

Soil Conservation Service (SCS) Method(1999)

Rose of Rosental

 Evolved for uniform rainfall using assumptions for a triangular hydrograph; Assumptions of rational method and corresponding SCS triangular hydrograph

Time for peak flow

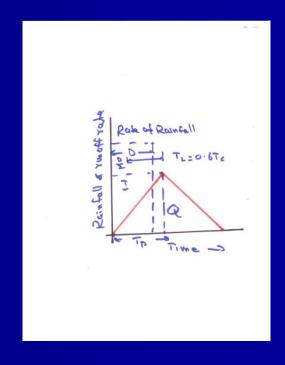
- T_p Time of peak; D- Duration of excess rainfall; T_L Time of Lag; T_c Time of Concentration; T_c = T_L /0.6
- L- Longest flow length in m.
- N- Runoff curve number and
- S_a- average watershed gradient in m/m

$$T_p = \frac{D}{2} + T_L = \frac{D}{2} + 0.6T_c$$

$$Tc = \frac{L^{0.8} \left[\left(\frac{1000}{N} \right) - 9 \right]^{0.7}}{\left[4407 \left(S_g \right)^{0.5} \right]}$$

SCS Method

Peak flow rate(m³/s)


$$q = q_n A Q$$

q_n= unit peak flow rate (m³/sec per ha/mm of runoff)

A-Watershed area in ha

Q-Runoff depth in mm from curve number method

Unit peak flow rates are developed for a particular region using time of concentration and ratio of initial abstraction to 24 hour rainfall

Curve Number Method

- Developed based on observation in agricultural watersheds in USA for long time—rainfall and runoff by USDA.
- SCS-CN method –NRCS (Natural Resources Conservation Service)
- Based on recharge capacity of a watershed
- Recharge capacity based on antecedent moisture content and physical characteristics of watershed
- Curve Number is an index that represents combination of a hydrologic soil group and antecedent moisture conditions

SCS-CN Method

- **⊢** Hydrologic Soil Groups: SCS(1972)
- Group A (Low runoff potential):-Soil with high infiltration rates when thoroughly wetted, consisting mainly of deep well to excessively drained sands and gravels
 - High rate of transmission
- **Group B** (Moderately low runoff potential)
 - Moderate infiltration rates: -moderate rate of water transmission
- Group C (Moderately high runoff potential)
 - Slow infiltration rate
- Group D (High runoff potential) —slow infiltration
- Eg. Clay pan or layer

- Antecedent Moisture Condition (AMC)
- Index of watershed wetness which is determined by total

runoff in 5 days period preceding a storm

- AMC I
 - Lowest runoff potential
 - soil dry enough for cultivation
- AMC II
 - Average condition
- AMC III
 - Highest runoff potential
 - practically saturated

SCS-CN Method...

Potential maximum retention storage of watershed is related to curve number (Dimensionless); 0 to 100

Let I_a is the initial amount of abstractions (interception, depression storage & infiltration). It is assumed that ratio of direct runoff Q and rainfall P minus initial loss (P-I_a) is equal to ratio of actual retention to storage capacity, S

 $\frac{Q}{P - I_a} = \frac{P - Q - I_a}{S} \tag{1}$

where, I_a -Initial amount of abstraction; I_a is assumed to be a fraction of S on an average I_a =0.2S

SCS-CN Method...

Therefore, Equation (1) becomes

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$

Knowing P and S, value of Q can be

Computed. Q has same units as P (in mm)

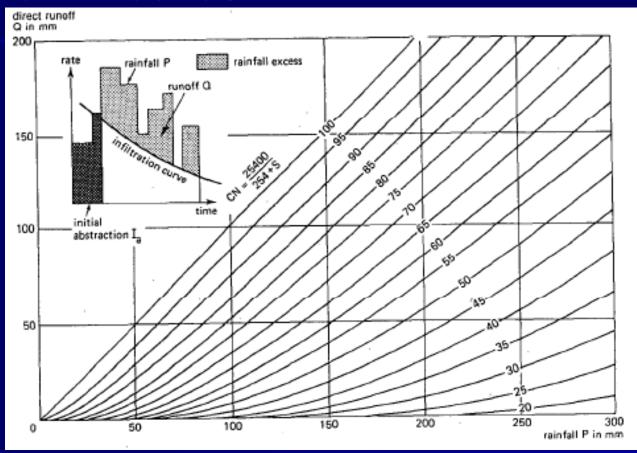
For convenience in evaluating antecedent rainfall, soil conditions and land use practices, curve number

$$CN = \frac{25400}{254 + S}$$

where, S- recharge capacity of watershed

SCS-CN Method- Runoff CN for different hydrologic soil

Cover			Hydrologic Groups			
Land	Treatme	Hydrologic	A	В	C	D
Use or cover	nt or practice	condition				
1	2	3	4	5	6	7
Fallow	Straight		77	86	91	94
	row					
Row	Straight	Poor	72	81	88	91
crops	row					
Row	Straight	Good	67	78	85	89
crops	row					


SCS-CN Method...

- Above Table, given for antecedent rainfall condition II; Average condition
- Various tables available for various conditions
- Heterogeneous watershed may be divided into sub areas with different numbers and then a weighted curve number can be computed for those watershed
- Also CN can be developed for local conditions depending upon soil & other conditions.

SCS-CN Method...

Relationship between rainfall & runoff curve number CN (after Soil Conservation Service 1972)

Example Problem

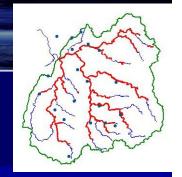
 Calculate the runoff from a watershed of 50 Ha for the following data using SCS-CN method. Depth of rainfall=150mm; Antecedent Moisture condition, AMC I. Row crop, good condition in 30 Ha; Woodland, good condition in 20Ha.

Type of crop CN at AMCII AMCI Row crop, good 82 82x0.8= 65.6 Woodland, good 55 55x0.65= 35.75 Weighted CN = $(65.6 \times 30 + 35.75 \times 20)/50 = 53.66$ Using $CN = \frac{25400}{254 + S}$; S= 219.35

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$

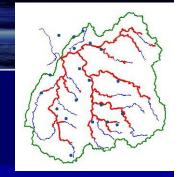
Q = 34.606 mm; Runoff in response to 150mm rainfall

References


- Raj Vir Singh (2000), Watershed Planning and Management, Yash Publishing House
- J.V.S Murthy (1991), Watershed Management, New Age international Publications
- Ghanshyam Das (2000), Hydrology and soil conservation engineering, Prentice Hall of India
- http://en.wikipedia.org
- http://www.fao.org
- Viessman and Lewis (2007), Introduction to Hydrology, Pearson Education.

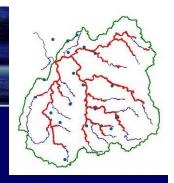
Tutorials - Question!.?.

- Study the different types of models used for runoff calculations for a given rainfall. Compare the black box models, lumped models and physically based models, with advantages and limitations of each.
- For a typical watershed, compare various Empirical equations available in literature for the calculation of runoff for the given rainfall.
- For a given rainfall depth, calculate the runoff using each method & compare the results.
- Get necessary standard values for each method from the literature.


Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

Self Evaluation - Questions!.

- Why models are required for watershed planning & management?.
- Differentiate between black box models, lumped models & distributed models.
- What are the important model selection criteria in watershed modeling?.
- Discuss important Empirical equations used for runoff calculations for a given rainfall.


Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

Assignment- Questions?.

- Which are the different processes that can be simulated using models in a watershed.
- Differentiate between: a) event based & continuous models; b) lumped & distributed models.
- Illustrate the Rational method for runoff estimation, with its advantages & limitations.
- Describe the SCS-CN method for runoff estimation with its advantages & limitations.

Unsolved Problem!.

- For your watershed area, for a given rainfall depth, calculate the possible runoff using a) Rational Method; b) SCS-CN method, and compare the results.
- From the topographical & land use details, obtain the runoff coefficients for various areas & find the average runoff coefficient based on literature values.
- Based on the land use pattern, and possible antecedent moisture conditions, identify the possible curve number and get the weighted average.
- Compute the runoff based on the average runoff coefficient & curve number.

THANKYOU

Dr. T. I. Eldho

Professor,

Department of Civil Engineering,

Indian Institute of Technology Bombay,

Mumbai, India, 400 076.

Email: eldho@iitb.ac.in

Phone: (022) – 25767339; Fax: 25767302

http://www.civil.iitb.ac.in

