Geosynthetics Engineering In Theory and Practice - Video course

COURSE OUTLINE

- Background of reinforced earth, mechanism and concepts, Basis of reinforced earth wall design.
- Geosynthetics classifications, functions, applications, raw materials used. Different types of Geosynthetics, manufacturing, system, Design and sustainability.
- Various properties of Geosynthetics, physical properties, mechanical properties, hydraulic properties & endurance properties, Nano material.
- Mechanism of filtration and drainage functions & their applications, Design step for erosion control and geocomposite drainage.
- Mechanisms and concept of pavement, design of unpaved road, Giroud and Noiray method, U.S. Forest services, airfield pavement design, reflection cracking, pavement rehabilitation and repair, Nano material.
- Different types of facing elements, construction procedure, cost, design of Geosynthetics wrap around faced wall, geogrid reinforced soil walls, geocell wall, gabion wall.
- Model for single and multi-layer reinforced slopes, guidelines for design of reinforced slopes, software for reinforced soil slopes.
- Design of basal reinforced embankment, placement of Geosynthetics, construction procedure, widening of existing road embankments.
- Consolidation techniques, Development of design chart for prefabricated vertical drains, ground instrumentation and monitoring, Design of encased stone columns, geocell/geofoam systems.
- Bearing capacity of Geosynthetics reinforced soil system, geocell reinforced sand overlaying soft clay.
- Geotextile tubes, geotextile containers, geotextile bags, dewatering waste and contaminated sediments, installation and design of geotextile tube.
- Design of landfill liner, veneer slope stability without and with seismic analysis, run out length, settlement of landfill, advantage of LSS model.
- Applications, advantage, function of geofoam, physical, mechanical and thermal properties of geofoam, design of embankment using geofoam, geofoam reinforced soil walls, New light weight fill material.

COURSE DETAIL

Module No.	No. Of Lecture
Module No.1	5
Module No.2	4
Module No.3	5
Module No.4	5

NPTEL

http://nptel.ac.in

Civil Engineering

Pre-requisites:

Viewer's Knowledge of Basic Soil Mechanics and Foundation Engineering/ Geotechnical Engineering

Additional Reading:

International/ National Journals, Conferences etc. and any other books/ texts related on Geosynthetics and other related products

Coordinators:

Prof. J. N. Mandal Department Of Civil Engineering IIT Bombay

Module No.5	6
Module No.6	10
Module No.7	4
Module No.8	3
Module No.9	7
Module No.10	1
Module No.11	2
Module No.12	5
Module No.13	6
Total	63

References:

- Koerner, R. M. (2012). Designing with Geosynthetics, 6th Edition, Vol. 1 and 2, Xlibris corp., 914 p.
- Giroud, J. P. (1984). "Geotextiles and Geomembranes. Definitions, Properties and Design," Selected Papers, Revisions and Comments, 4th ed., IFAI Publishers, 325 p.
- Holtz, R. D., Christopher, B. R. and Berg, R. R. (1997) Geosynthetic engineering, Bitech publishers Ltd., 452p.
- Hausmann, M. R. (1990). Engineering Principles of Ground Modification, McGraw-Hill Publishing Company, New York, 632 p.
- Ingold, T. S. (1982). Reinforced Earth, Thomas Telford Ltd., London, 141 p.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.ac.in