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Finite Element Analysis 

Assignment 6  

      

1. Obtain an approximate solution of the following boundary value problem using two linear 

triangular element as shown in the following figure.   
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with the boundary conditions: 

along 1-2: T = 2 

along the other boundaries: 2  T n . 

 

2. Obtain an approximate solution of the following boundary value problem using two linear 

triangular elements as shown in the following figure. 
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with the boundary conditions  

 

∂ψ/∂y = 0 on C1 

ψ = 0 on C2 and C3 
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∂ψ/∂x = 0 on C4 

3. Obtain an approximate solution of the following boundary value problem using two linear 

triangular elements as shown in the following figure. 
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For non-constant coefficients, use values at element centroids as constant average values for 

the entire element with boundary conditions 
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4. Obtain an approximate solution of the following boundary value problem using two linear 

triangular elements as shown in the following figure. 
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with the boundary conditions: 

along 1-2: T = 2 

along the other two boundaries: 2  T n T . 
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5. Find the lowest eigenvalue  for the following problem using two linear triangular elements 

as shown in the following figure. 
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with the boundary conditions: 

along 1-2: T = 0 

along the other three boundaries: 0  T n . 

 

 

6. Obtain explicit expressions for isoparametric mapping for the element shown in the 

following figure.  Is the mapping is fine?  Compute the derivatives 4 N x , and 4 N y . 
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7. For the element shown in the following figure, the solution at the nodes is given as follows: 

 0 10 20 0 0 50 0 0 T
T  

Compute the solution and its x and y derivatives at the point  1 1, .  The nodal coordinate 

vectors are as follows: 
 

 
0 0 2 828 4 0 2 5 1 0 0 707 0 0 0 0

4 0 2 828 0 0 0 5 1 0 0 293 0 0 2 0
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8. Evaluate matrices  


T
p

A

P dAk NN  and vector 

2

   

S

dSr N  for the element in 

Problem 7.  Assume P = 2 and  = 2 resulting from a natural boundary condition on side 

567.  Use 33 integration.  Show complete calculations for at least one Gauss point. 

 

9. The state of stress at a point is given as follows: 
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Determine ( , )f x y  so that the stress distribution may be in equilibrium in the absence of 

body forces. 

10. Develop a deformation field ( , ) ,  ( , )u x y v x y  that describe the deformation of the finite 

element shown in the following figure.  From this determine , ,  x y xy .  Interpret your 

answer. 

 

 

 

 

 

 

 

11. Compute stresses and strains at a point located at (2,2) for the problem shown in the 

following figure, using only one quadrilateral element.  Assume plane strain conditions.  E = 

20.6842GPa,  = 0.25, thickness = 0.0254 m.  
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