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Summary of the previous lecture

* Moments of a distribution

 Measures of central tendency, dispersion,
symmetry and peakedness

* Introduction to Normal distribution



Normal Distribution

X—-u . .
l=—-" -- Linear function
O
— b—l Y =a+ bX
"o o Y ~ N(a+by, b20?)
7z N[ a1 x02]
o o o’
: N(O,1)
pdf of z | e
f(z)—\/zfe A —00 <z <400
cdf of z 1 z

F f /dz —00 < Z <40



Normal Distribution

» f(z) is referred as standard normal density function
 The standard normal density curve is as shown
* 99% of area lies between +30

f(z) ]

A

0.95
>

3 2 -1 0 1 2 3,

« f(z) cannot be integrated analytically by ordinary means
* Methods of numerical integration used
« The values of F(z) are tabulated.



Normal Distribution

Obtaining standard variate 'z’ using tables:

A

O~

Tables given in most standard
text & reference books provide
this area

P[Z < z] = 0.5+Area from table

>
z



Normal Distribution Tables

z 0 2 4 6 8
0 0 0.008 | 0.016 | 0.0239 | 0.0319
0.1 | 0.0398 | 0.0478 | 0.0557 | 0.0636 | 0.0714
0.2 | 0.0793 | 0.0871 | 0.0948 | 0.1026 | 0.1103
0.3 | 0.1179 | 0.1255 | 0.1331 | 0.1406 = 0.148
3\ 04 | 0.1554 | 0.1628 | 0.17 | 0.1772 | 0.1844
N 0.5 | 01915 | 0.1985 | 0.2054 | 0.2123 | 0.219
W 0.6 | 0.2257 | 0.2324 | 0.2389 | 0.2454  0.2517
0.7 | 0.258 | 0.2642 | 0.2704 | 0.2764  0.2823
X X 0.8 | 0.2881 | 0.2939 | 0.2995 | 0.3051 | 0.3106
) 0.9 | 0.3159 | 0.3212 | 0.3264 | 0.3315 | 0.3365

1 | 0.3413 | 0.3461 | 0.3508 | 0.3554

0.3599




Normal Distribution Tables

Z 0 2 4 6 38
3.1 0.499 | 0.4991 | 0.4992 | 0.4992 | 0.4993
3.2 0.4993 | 0.4994 | 0.4994 | 0.4994 | 0.4995
3.3 0.4995 | 0.4995 | 0.4996 | 0.4996 | 0.4996
3.4 0.4997 | 0.4997 | 0.4997 | 0.4997 | 0.4997
3.5 0.4998 | 0.4998 | 0.4998 | 0.4998 | 0.4998
3.6 0.4998 | 0.4999 | 0.4999 | 0.4999 | 0.4999
3.7 0.4999 | 0.4999 | 0.4999 | 0.4999 | 0.4999
3.8 0.4999 | 0.4999 | 0.4999 | 0.4999 | 0.4999
3.9 0.5 0.5 0.5 0.5 0.5




Normal Distribution

P[Z < 7] f(z) 1

(0.5 A,)

~

A, ~ from tables

/from table

e.g., P[Z<-0.7] =0.5-0.258
=0.242

+Z

0.5 10.1915

0.6 10.2257

0.7 | 0.258




Example-1

Obtain the area under the standard normal curve

between -0.78 and 0

A

7

-0.

~

8 0

PI078 <Z < 0] = ——

-0.78
= (0.2823
From Tables:

Req. area = area betn. 0 and +0.78
= (0.2823

>
Z

0.78

f /dz—Lf s

7

0.6

0.2486

0.2517

0.2549

0.7

0.2794

0.2823

0.2852

0.8

0.3078

0.3106

0.3133




Example-2

Obtain the area under the standard normal curve

z<-0.98 A _\77\03
% NI
Req. area ////
— >
-0.98 0 k\\“ ,
From tables:
Req. area = 0.5 — area between 0 and +0.98
=0.5-0.3365 y4 7 8 9
= 0.1635 0.8 |0.3078|0.3106 | 0.3133
0.9 0.334 | 0.3365 | 0.3389
1 0.3577 | 0.3599 | 0.3621
1.1 0.379 | 0.381 | 0.383

10




Obtain 'z’ such that P[Z < z]=0.879

Example-3

Since the probability of P[Z < z] is greater than 0.5, 'Z

must be +ve

Area=0.879 \\

A

0 yA

>

Z

6

7

1.1

0.377

0.379

0.381

1.2

0.3962

0.398

0.3997

area between 0to z=0.879-0.5

=0.379

From the table, for the area of 0.379, corresponding

z=117




Example-4

Obtain P[X < 75] if N ~ (100, 25002)

_ XM

z

75-100
2500

=—-(0.01
From the table,

A
Req. area
RN \
: el

-0.01

0

Req. area = 0.5 — area between 0 and +0.01

= 0.5 - 0.004
= 0.496
P[X < 75] = 0.496

yA

z 0 1 2
0.0 0 0.004 | 0.008
0.1 10.0398/0.0438/0.0478




Example-5

Obtain ‘x’ such that P[X > x]=0.73 if u,=650; o, = 200

A

P[X < x]=0.27 Area=%/ \

P[Z < 7]=0.27 R 1 ;
0.5 0.195 | 0.1985
area between 0to-z=0.5-0.27 06 | 02291 | 0.2324
=0.23
From the table, z = -0.613
X — _
Z = M; —O.613=x 650  x =527

o 200




Example-6

A rv ‘X is normally distributed with following

probabilities:

P[X < 50] = 0.106 and P[X < 250] = 0.894

Obtain u and o of ‘X'

P[X < 50] = 0.106

0.394
0.106

A

o

P[Z<zZ] =0.106 7

0

+Z

Since the probability is less than 0.5, z is —ve.

From tables, for area of 0.394, -z=1.25

yA

x—u S0-u [ 25 z 4 5 6
Z = : —_— = -],
o O 1.1 10.3729/0.3749| 0.377
1=50+1250 1.2 10.3925 0.39440.3962
1.3 10.4099|0.4115|0.4131




Example-6 (contd.)
t 0394
P[X < 250] = 0.894 Area=0.894 BN
P[Z < z] = 0.894 & S~

From tables, for area of 0.394, z=1.25

poXmu 204 s
O O

250 — 1 =1.25 G

250 — (50 + 1.25 6) = 1.25 G

200=250

o = 80,

u =150



Example-7

Annual rainfall ‘P’ is normally distributed over a basin
with mean 1000mm and standard deviation 400mm.
Annual runoff ‘R’ (in mm) from the basin is related to
annual rainfall by

R = 0.5P-150.

1. Obtain the mean and standard deviation of annual
runoff.

2. Obtain the probability that the annual runoff will
exceed 600mm



Example-7 (contd.)

R =-150 + 0.5P — Linear function of ‘P’
Since P ~ N(1000, 4002),
R ~ N(a+bu, b%c?)

~ N(-150+0.5 x1000, 0.52x 4002)

~ N(350, 2007?)

Mean, u = 350mm and
Standard deviation o = 200mm



Example-7 (contd.)

P[R > 600] = 1 — P[R < 600]

Standard variate ‘Z' for R = 600

_x—u_ 600-350
’ 200

=1.25

z
O

From tables, P[Z < 1.25] = 0.3944

P[R > 600] = 1 — P[R < 600]

=1—P[Z < 1.25] z | 4 | 5 | ®

=1 _ 0.3944 1.1 10.3729/0.3749| 0.377

= 0.6056 1.2 10.3925/0.39440.3962
1.3 10.4099/0.4115/0.4131




Central limit theorem

I | D D G are independent and identically
distributed random variables with mean ‘u’ and
variance ‘0%, then the sum

S, = X+ X,+....... +X,

approaches a normal distribution with mean nu and
variance no?as n — «

S : N (nﬂ,nol )
lid — independent & identically distributed



Central limit theorem

* For hydrological applications under most general
conditions, if Xi's are all independent with E[x]= w; and
var(X)) = ¢, then the sum

S, = X+ X+, +X asn — x
approaches a normal distribution with

= S u &
i=1
Var E 0

One condition for this generallsed Central Limit Theorem is that each X
has a negligible effect on the distribution of S, (Statistical Methods in
Hydrology, C.T.Haan, .Affiliated East-West Press Pvt Ltd, 1995, p. 89)



Log-Normal Distribution

« ‘X'is said to be log-normally distributed if Y = In X is
normally distributed.

* The probability density function of the log normal
distribution is given by

1 e—(lnx—/,tx )2/205

J(x)=
V27w x0,
* ¥ =3C+C/
where C, is the coefficient of variation of ‘X’

O<x<»,0<pu <x,0 >0

As C, increases, the skewness, vy, , increases



Log-Normal Distribution

The parameters of Y= In X may be estimated from




Log-Normal Distribution

f() 1,=0.3
o0,°=1

X

* Positively skewed — with long exponential tail on the
right.
« Commonly used for monthly streamflow, monthly/

seasonal precipitation, evapotranspiration, hydraulic
conductivity in a porous medium etc .



Example-8

Consider the annual peak runoff in a river - modeled by

a lognormal distribution
1=5.00and 0 =0.683 ||

-\)\ /,\ﬂj\

Obtain the probability that annual runoff exceeds 300m3/

S

P[X > 300] = P[Z > (In300-5.00)/0.683]

= P[Z > 1.03]
=1-P[Z < 1.03]
= 1-0.3485

= 0.6515

y4

0.9

0.3212

0.3238

0.3264

1

0.3461

0.3485

0.3508

1.1

0.3686

0.3708

0.3729




Example-9

Consider

x=135Mm?3,S=23.8 Mm3and C,=0.176
If X follows lognormal distribution
Obtain the P[X > 150]
1. [ X°
2 | C? +1}

i 2
= lln 1352 } =4.89
2 10.176" +1

S, =In(C,2+1) =In(0.1762+1) = 0.0305
S, =0.1747




Example-9 (contd.)

Y = In X follows log normal distribution
P[X>150]=P[Y >1In150];
In150 = 5.011
y-y

z="—"

S

y

©5.011-4.89

0.1747
=(.693

P[Y > In150] = 1— P[Y < In150]
= 1— P[Z < 0.693]
= 1 — (0.5+0.25583)
= 0.24117




Exponential Distribution

The probability density function of the exponential
distribution is given by

f(x)=Ae™ x>0,A>0
A

f(x)
E[X] = 1/n

A=1/u

Var(X) = 1/)\?
v

F(x) =}f(xﬁx@ x>0,A>0



Exponential Distribution

« v, >0; positively skewed

« Used for expected time between two critical events (such
as floods of a given magnitude), time to failure in
hydrologic/water resources systems components

ol




Example-10

The mean time between high intensity rainfall (rainfall
intensity above a specified threshold) events occurring
during a rainy season is 4 days. Assuming that the
mean time follows an exponential distribution.

Obtain the probability of a high intensity rainfall
repeating

1. within next 3 to 5 days.

2. within next 2 days

Mean time (u) = 4
A=1u=1/4



Example-10 (contd.)

1. P[3 <X < 5] = F(5) - F(3)

F(5)=Q‘70 RN \ —
0. ¥ \

1
F(3)=1-—¢7*
B)=1-7

= 0.5276
P[3 < X < 5] =0.7135 — 0.5276 = 0.1859

2. P[X < 2] =1—%e_2/4 - 0.3935

Y

/\‘7\

30



Gamma Distribution

The probability density function of the Gamma
distribution is given by

n_n-1_-Ax
=2 ) XA >0
n
Two parameters A & 1)
I'(n) is a gamma function
'M)=Mm-N,n=12,.. (1) =T(2) =1; T(1/2)=Jn

I'(n+1) =’7\/; n>0

I'(n) = ft"‘le"dt n >0

Gamma distribution is in fact a family of distributions



Gamma Distribution

Exponential distribution is a special case of gamma
distribution with n=1

A — Scale parameter

n — Shape parameter

Mean = n/A

Variance=n/A2 — o© =\/;//1

Skewness coefficient y = 2/ \/Z

As vy decreases, mn increases

Cdf is given by

n-1

F(x)=1—e"b‘z(/lx)j/j! X, A0 >0

j=0



f(x)

Gamma Distribution

1n=0.5
A=1

A — Scale parameter
n — Shape parameter




Gamma Distribution

If ‘X" and Y’ are two independent gamma rvs having
parameters 4, A and n,, A respectively then U=X+Y
IS @a gamma rv with parameters n=n,+ n, and A

This property can be extended to sum of ‘n’ number
of independent gamma rvs.

Gamma distribution is generally used for
daily/ monthly/annual rainfall data

Also used for annual runoff data



Example-11

During the month 1, the mean and standard deviation
of the monthly rainfall are 7.5 and 4.33 cm resp.

Assume monthly rainfall data can be approximated by
Gamma distribution

1. Obtain the probability of receiving more than 3cm
rain during month 1.

Given, u=7.5, 0=4.33

Estimate the parameters A, 1

u=mn/A— 7.5=n/\
A=n/7.5



Example-11 (contd.)

o=n/A — 433=+n/2
Jn/n=433/175

n=3
A=4
A, xn -1 _—-Ax
f(x)_ F(n) x9/1>77>0
43 3-1 4 I'(3)= (3-1)!=2!




Example-11 (contd.)

P[X>3]=1-P[X<3]
3
=1-[32x%e " dx
J

85
{2

=(0.0005



Example-11 (contd.)

During the month 2, the mean and standard deviation
of the monthly rainfall are 30 and 8.6 cm respectively.

1. Obtain the probability of receiving more than 3cm
rain during month 2.

2. Obtain the probability of receiving more than 3cm
rain during the two month period assuming that
rainfalls during the two months are independent.

Given, u= 30, o= 8.66
The parameters A, n are estimated.
u=n/A— 30=mn/\

A =n/30



Example-11 (contd.)
o=n/i — 866= n/i

Jn/n=8.66/30
n =12
=4

x,A,n>0

r(12)= (12-1)1=11!



Example-11 (contd.)

1. P[X>3]=1-P[X < 3]

3
=1-(0.42x" e dx
J

12

=1- (0.993 _ 13073 )
e

=(.4683

2. Probability of receiving more than 3cm rain during
the two month period:

Since A value is same for both the months and the
rainfalls during the two months are independent,



Example-11 (contd.)

Then the combined distribution will have the parameters
N, A as

n=3+12=15
=4
/'Ln n-1_-Ax
Therefore f(x)= r ¢ x,A,n>0
L' ()
415x15—le—4x
~r(15)

=0.0123x"e™



Example-11 (contd.)

P[X >3] =1—P[X < 3]

3
=1—jbxn23fﬂf“dx
0

12

=1- (0.99865 —
e

125481)

=0.7723

The values of cumulative gamma distribution can be
evaluated using tables with x?=2Ax and v=2n



Extreme value Distributions

Interest exists in extreme events. For example,
— Annual peak discharge of a stream
— Minimum daily flows (drought analysis)

The extreme value of a set of random variables is also a
random variable

The probability of this extreme value depends on the
sample size and parent distribution from which the
sample was obtained

Consider a random sample of size ‘n’ consisting of
Xqs Xoyeurennne X,. Let "Y' be the largest of the sample
values.



Extreme value Distributions

Let F,(y) be the prob(Y <y) and in(x) be the prob(X; < x)
Let f,(y) and fxi(x) be the corresponding pdfs.

F,(y) = prob(Y < y) = F(all of the x’s <'y). If the x's are
iIndependently and identically distributed,

Fy(y) = F (¥) Fi(¥)-oo. Fy (y) = [Fx(Y)I"
f,(y) = d F (y) /dy = n[F(y)]"" f,(y)

Therefore the probability distribution of the maximum of

'n’ independently and identically distributed rvs depends
on the sample size ‘n’ and parent distribution F,(x) of the
sample



Extreme value Distributions

* Frequently the parent distribution from which the
extreme is an observation is not known and

cannot be determined.

* |If the sample size is large, certain general
asymptotic results that depend on limited
assumptions concerning the parent distribution
can be used to find the distribution of extreme

values



Extreme value Distributions

* Three types of asymptotic distributions are developed

» Type-| — parent distribution unbounded in direction of
the desired extreme and all moments of the
distribution exists. — Normal, log-normal, exponential

» Type-ll — parent distribution unbounded in direction of
the desired extreme and all moments of the
distribution do not exist. — Cauchy distribution

» Type-lll — parent distribution bounded in direction of
the desired extreme. — Beta, Gamma, log-normal,
exponential



Extreme value Type-| Distribution

Referred as Gumbel’s distribution
Pdf is given by

f(x)=exp{n‘(x /a exp n(x /a }/0:

—o<x<®;—0< ff<o;a>0

'~ applies for maximum values and ‘+’ for minimum
values

o and f are scale and location parameters

= mode of distribution

Mean E[x] = a + 0.577 § (Maximum)
=a-0.577  (Minimum)



Extreme value Type-| Distribution

« Variance Var(x) = 1.645 o?

« Skewness coefficienty = 1.1396 (maximum)
= -1.1396 (minimum)

Y =(X-p) a— transformation

» Pdf becomes

f)=expimy-exp[my]}  —wcy<a

« Cdf - F(y)=eXp{—eXp(—y)} (maximum)
=1—exp{—exp(y)} (minimum)

Fmin(y) =1- Fmax('y)



Extreme value Type-| Distribution

 The parameters a and 3 can be expressed in terms of
mean and variance as (Lowery and Nash (1980))

9
1.283

a =

and g =u- 0450 — (maximum)
=u+ 0450 — (Minimum)



Example on Gumbell’s distribution

Consider the annual peak flood of a stream follows
Gumbell’s distribution with

u=9m3/s and o = 4m?/s,

1. Obtain the probability that annual peak flood exceeds
18m3/s and

2. Obtain the probability that it will be utmost 15m3/s



Example on Gumbell’'s distribution
(contd.)

1. To obtain P[X > 18000],
the parameters a and 3 are obtained initially
o = 0/1.283
= 4/1.283
=3.118
F=u—-0450
= 9-0.45*4
=7.2

P[X>18]=1-P[X < 18]
=1-F(18)
=1 — exp{-exp(-y)}



Example on Gumbell’'s distribution

(contd.)
y=Xx-p) o
= (18-7.2)/3.118
= 3.464

P[X > 18] = 1 — exp{-exp(-y)}
=1 — exp{-exp(-3.464)}
=1-0.9692
= 0.0308



Example on Gumbell’'s distribution

(contd.)
2. To obtain P[X < 15],

y=Xx-pB)a
(15-7.2)/3.118
2.502

F(y) = exp{-exp(-y);
= exp{-exp(-2.502)}
=0.9213

P[X < 15] = 0.9213



Example-2

Consider the annual peak flood of a stream exceeds
2000m3/s with a probability of 0.02 and exceeds 2250m3/
s with a probability of 0.01

1. Obtain the probability that annual peak flood exceeds
2500m3/s

Initially the parameters a and § are obtained from the
given data as follows

P[X > 2000] = 0.02
P[X <2000]=0.98
exp{-exp(-y)} = 0.98



Example-2 (contd.)

y = -In{-In(0.98)}
y = 3.902

2009=F 3900 _, Equation-1
(04

P[X > 2250] = 0.01
P[X <2250] =0.99
exp{-exp(-y)} = 0.99
y = -In{-In(0.99)}
y=4.6
2250-p4
o

=4.6 — Equation-2



Example-2 (contd.)

Solving both the equations,
o =358 and § = 603

Now P[X > 2500] = 1 — P[X < 2500]
= 1 —exp{-exp(-y)}
y=(Xx-p) o
= (2500-603)/358
= 5.299
P[X > 2500] = 1 — exp{-exp(-5.299)}
=1-0.995
= 0.005



Extreme value Type-lll Distribution

 Referred as Weibull distribution
« Pdfis given by

f(x)=ax*"'g™ exp{—(x//a’)a} x=z0;a,6>0
« Cdfis given by
F(x)=1—exp{—(x//3)a} x=0a,5>0

* Mean and variance of the distribution are
E[X]=p T'(1+1/a)
Var(X) = B2 {I'(1+2/a) — T'?(1+1/0)}



Extreme value Type-lll Distribution

* The Weibull probability density function can range from a
reverse-J with <1, to an exponential with =1 and to a
nearly symmetrical distribution as increases

 If the lower bound on the parent distribution is not zero, a
displacement must be added to the type lll extreme
distribution for minimums, then pdf is

F=alx-ef (B-e) “exp|-[(x-e)/(-¢)] |

* known as 3-parameter Weibull distribution
« Cdfis

F(x) = l—exp{— [(x—g)/(/’)_g)]a}



Extreme value Type-lll Distribution

e Y={(X=-¢)(p—¢)}* — transformation
« Mean and variance of the 3-parameter Weibull
distribution are
E[X]=¢+ (f-¢) (1+1/a)
Var(X) = (- €)? {T'(1+2/a) — T%(1+1/a)}



