STOCHASTIC HYDROLOGY

Lecture -14

Course Instructor: Prof. P. P. MUJUMDAR

Department of Civil Engg., IISc.

Summary of the previous lecture

- Frequency domain analysis
 - Spectral density
 - Test for significance of periodicities
 - Removing periodicities
 - Standardizing the data

Frequency Domain Analysis

- Spectral density (I_k) is the amount of variance per interval of frequency
- Spectral analysis helps indentify the significant periodicities themselves

 A peak in the spectrum indicates an important contribution to variance at frequencies close to the peak

- · Prominent spikes indicate periodicity
- Line spectrum inconsistent estimate
- Power spectrum consistent estimate

Example – 1

(Spectral Analysis)

Monthly Stream flow (in cumec) statistics(1979-2008) for a river is selected for the study. (Part data shown below)

Year	Month	S.No.	Flow
1979	June	1	54.6
	July	2	325.4
	August	3	509.5
	September	4	99.4
	October	5	53.5
	November	6	25.8
	December	7	12.5
1980	January	8	5.6
	February	9	3.1
	March	10	2.2
	April	11	0.9
	May	12	0.81

N = 348

(Spectral Analysis)

The time series plot

(Spectral Analysis)

Time series plot of Z_t,

 $Z_t = X_t - Y_t$

(Spectral Analysis)

Significance test:

$$I = \frac{\gamma^2 (N-2)}{4\hat{\rho}_1}$$

Where $\gamma^2 = \alpha^2 + \beta^2$ and

$$\hat{\rho}_1 = \frac{1}{N} \left[\sum_{t=1}^{N} \left\{ x_t - \hat{\alpha} \cos(\omega_k t) - \hat{\beta} \sin(\omega_k t) \right\} \right]$$

For first peak, ω_1 = 0.5236, α_1 = 29.28, β_1 = 172.93

Therefore
$$\gamma^2 = 29.28^2 + 172.93^2$$

= 30762

(Spectral Analysis)

$$\hat{\rho}_{1} = \frac{1}{N} \left[\sum_{t=1}^{N} \left\{ x_{t} - \alpha_{1} \cos(\omega_{1} t) - \beta_{1} \sin(\omega_{1} t) \right\} \right]$$

$$= \frac{1}{348} \times 36810.56$$

$$= 105.78$$

$$I = \frac{\gamma^2 (N-2)}{4\hat{\rho}_1} = \frac{30762(348-2)}{4 \times 105.78} = 25155$$

From 'F' distribution table at 95% significance level, F(2, 346) = 3.0

(Spectral Analysis)

Therefore the periodicity is significant.

The values for other periodicities are as follows

ω_{k}	Statistic	F(2, N-2)
0.5236	25154	3.0
1.0472	11242	3.0
1.5708	4104	3.0
2.0944	1295	3.0

(Spectral Analysis)

 The periodicities from the time series is removed by transforming the series into a standardized one.

The series {X_t} is expressed as the new series

{Z'_t} where,

$$Z'_{t} = \frac{\left(X_{t} - \overline{X}_{i}\right)}{S_{i}}$$

The mean and standard deviation for each month is tabulated.

Month	Mean	Stdev.
Jun	117.49	52.24
Jul	474.50	150.18
Aug	421.39	126.53
Sep	145.94	77.65
Oct	66.61	30.67
Nov	22.99	13.26
Dec	10.30	9.82
Jan	5.55	9.16
Feb	1.91	0.74
Mar	1.09	0.54
Apr	0.76	0.51
May	0.80	0.60

(Spectral Analysis)

$$Z'_1 = \frac{(54.6 - 117.49)}{52.24} = -1.204$$
 (June)

$$Z'_2 = \frac{(325.4 - 474.5)}{150.18} = -0.993$$
 (July)

$$Z'_{3} = \frac{(509.5 - 421.39)}{126.53} = 0.696$$
 (August)

And so on.

(Spectral Analysis)

Series of Z'_t (part data shown)

Year	Month	S.No.	X _t	Z' _t
1979	June	1	54.6	-1.204
	July	2	325.4	-0.993
	August	3	509.5	0.696
	September	4	99.4	-0.599
	October	5	53.5	-0.428
	November	6	25.8	0.212
	December	7	12.5	0.224
1980	January	8	5.6	0.006
	February	9	3.1	1.609
	March	10	2.2	2.063
	April	11	0.9	0.272
	May	12	0.81	0.019

(Spectral Analysis)

Correlogram of standardized data. Correlogram of original series $\rho_{\mathbf{k}} \stackrel{\text{0.5}}{\underset{\text{0.6}}{\downarrow}} \stackrel{\text{0.5}}{\underset{\text{0.6}}{\downarrow}} \stackrel{\text{0.5}}{\underset{\text{0.6}}{\downarrow}} \stackrel{\text{0.5}}{\underset{\text{0.6}}{\downarrow}} \stackrel{\text{0.5}}{\underset{\text{0.6}}{\downarrow}} \stackrel{\text{0.6}}{\underset{\text{0.2}}{\downarrow}} \stackrel{\text{0.4}}{\underset{\text{0.2}}{\downarrow}} \stackrel{\text{0.6}}{\underset{\text{0.2}}{\downarrow}} \stackrel{\text{0.4}}{\underset{\text{0.2}}{\downarrow}} \stackrel{\text{0.6}}{\underset{\text{0.2}}{\downarrow}} \stackrel{\text{0.6}}{\underset{\text{0.6}}{\downarrow}} \stackrel{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\downarrow}}} \stackrel{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\downarrow}}} \stackrel{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\downarrow}}} \stackrel{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\downarrow}}} \stackrel{\text{0.6}}{\underset{\text{0.6}}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\underset{0.6}}}{\underset{\text{0.6}}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}{\underset{\text{0.6}}}{\underset{\text{0.$

0

-0.2

-0.4

Lag, k

(Spectral Analysis)

(Spectral Analysis)

Test for significance for standardized data:

ω_{k}	Statistic	F(2, N-2)
0.5236	-4.7E-12	3.0
1.0472	-3.2E-12	3.0
1.5708	-3.5E-11	3.0

The periodicities are insignificant

ARIMA MODELS

Regression:

$$Y = f(X_1, X_2, X_3, X_4,...)$$

Auto Regression:

$$X_{t} = f(X_{t-1}, X_{t-2}, X_{t-3},...)$$

$$X_{t} = \phi_{1} X_{t-1} + \varepsilon_{t}$$

(Error, random component, noise, residual)

AR(2), model

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$$

AR(p) model

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + \varepsilon_{t}$$

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + \varepsilon_{t}$$

 $\{\phi_i\}$ are AR Parameters

Partial Auto Correlation (PAC):

Indicates the dependence of X_t on X_{t-k} when the dependence on all other variables $X_{t-1}, X_{t-2}, ..., X_{t-k-1}$ are removed.

e.g.,Y is regressed upon X_1 and X_2 , then it is of interest to ask how much explanatory power X_1 has if the effect of X_2 are partialled out.

This means regressing Y on X_2 , getting the residual errors from this analysis and regressing the residuals with X_1 .

$$Y = f(X_1, X_2)$$

$$Y = f(X_2)$$
 {e_i} get the errors

$$X_1 = f(e)$$
 How much of the relationship is being explained by X_1 alone

For AR(1), model

$$X_t = \phi_1 X_{t-1} + \varepsilon_t$$
 ϕ_1 Partial Auto Correlation (PAC) of order 1

For AR(2), model

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$$
 ϕ_2 is the PAC of order 2

AR(p) model

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + \varepsilon_{t}$$

 ϕ_p is the PAC of order p

Calculation of Partial Auto Correlations:

(Yule Walker equations)

 p^{th} order Yule Walker equations to get ϕ_p

$$P_p * \phi_p = \rho_p$$
Auto Correlations
function

Partial Auto Correlation

Gives partial auto correlation of order 'p'

$$\begin{bmatrix} 1 & \rho_{1} & \rho_{2} & . & . & \rho_{n-1} \\ \rho_{1} & 1 & \rho_{1} & . & . & \rho_{n-2} \\ \rho_{2} & & & & & \\ . & & & & & \\ \rho_{n-1} & \rho_{n-2} & . & . & . & 1 \end{bmatrix}_{p \times p} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ . \\ . \\ . \\ \phi_{p} \end{bmatrix}_{p \times 1} \begin{bmatrix} \rho_{1} \\ \rho_{2} \\ . \\ . \\ . \\ \rho_{p} \end{bmatrix}_{p \times 1}$$

For PAC of order 1,

$$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \phi_1 \end{bmatrix} = \begin{bmatrix} \rho_1 \end{bmatrix}$$
$$\phi_1 = \rho_1$$

For PAC of order 2,
$$\begin{bmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix}$$

$$\phi_1 + \rho_1 \phi_2 = \rho_1$$
$$\rho_1 \phi_1 + \phi_2 = \rho_2$$

$$\phi_{1} + \rho_{1} (\rho_{2} - \rho_{1} \phi_{1}) = \rho_{1}$$

$$\phi_{1} + \rho_{1} \rho_{2} - \rho_{1}^{2} \phi_{1} = \rho_{1}$$

$$\phi_{1} = \frac{\rho_{1} (1 - \rho_{2})}{1 - \rho_{1}^{2}}$$

$$\phi_{2} = \rho_{2} - \frac{\rho_{1}^{2} (1 - \rho_{2})}{1 - \rho_{1}^{2}}$$

$$= \frac{\rho_{2} - \rho_{2} \rho_{1}^{2} - \rho_{1}^{2} + \rho_{2} \rho_{1}^{2}}{1 - \rho_{1}^{2}}$$

$$= \frac{\rho_{2} - \rho_{1}^{2}}{1 - \rho_{1}^{2}}$$

$$\phi_{2} \text{ is PAC of order 2}$$

Example – 2

Obtain the ϕ_1 and ϕ_2 for $r_1 = 0.57$, $r_2 = 0.07$

Since
$$\phi_1 = r_1$$

$$\phi_1 = 0.57$$

$$\phi_2 = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}$$

$$= \frac{0.07 - 0.57^2}{1 - 0.57^2}$$

$$= -0.38$$

Box Jenkins Time series models:

- For stationary time series
- If the time series is stationary, the correlogram dies down fairly quickly (e.g., within 4 or 5 lags, in most hydrologic applications)
- If the time series is non stationary, the decay is very slow

- If the time series is non stationary, convert it to a stationary time series
- One way is by standardizing the time series described in spectral analysis
- Another way is by simply differencing the time series.

Differencing:

$$Y_{t} = X_{t}' = X_{t-1}$$

X_t' is First order differencing

$${X_t} = 2, 4, 6, 8, 10, \dots$$

$$\{Y_t\} = 2, 2, 2, \dots$$

$$X_{t}^{"} = X_{t}^{'} - X_{t-1}^{'}$$

X_t'' is Second order differencing

$$X''_{t} = X'_{t} - X'_{t-1}$$

$$= (X_{t} - X_{t-1}) - (X_{t-1} - X_{t-2})$$

$$= X_{t} - 2X_{t-1} + X_{t-2}$$

Example – 3 (Differencing)

Period,t	X _t	X,'	X, ' '
1	54.6	-	_
2	325.4	-270.8	_
3	509.5	-184.1	-86.7
4	99.4	410.1	-594.2
5	53.5	45.9	364.2
6	25.8	27.7	18.2
7	12.5	13.3	14.4
8	5.6	6.9	6.4
9	3.1	2.5	4.4
10	2.2	0.9	1.6
11	0.9	1.3	-0.4
12	0.81	0.09	1.21

Example – 4

Monthly Stream flow (in cumec) statistics(1979-2008) for a river is selected for the study. (Part data shown below)

Year	Month	S.No.	Flow
1979	June	1	54.6
	July	2	325.4
	August	3	509.5
	September	4	99.4
	October	5	53.5
	November	6	25.8
	December	7	12.5
1980	January	8	5.6
	February	9	3.1
	March	10	2.2
	April	11	0.9
	May	12	0.81

First order differenced data, $X_{t}' = X_{t-1}$

Example – 4 (contd.)

Second order differenced data

Example – 4 (contd.)

Third order differenced data

Example – 4 (contd.)

Standardized data

Operator 'B':

The effect of operator 'B' is to shift the argument to that one step behind.

$$BX_{t} = X_{t-1}$$

 $BX_{t-1} = X_{t-2}$

AR (1) Model:
$$X_{t} = \phi_{1}X_{t-1} + \epsilon_{t}$$

$$X_{t} = \phi_{1}BX_{t} + \epsilon_{t}$$

$$X_{t}(1 - \phi_{1}B) = \epsilon_{t}$$
AR (1) component

AR (2) Model:
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \epsilon_t$$

$$X_t = \phi_1 B X_t + \phi_2 B X_{t-1} + \epsilon_t$$

$$X_t = \phi_1 B X_t + \phi_2 B^2 X + \epsilon_t$$

$$X_t (1 - \phi_1 B - \phi_2 B^2) = \epsilon_t$$
 AR (2) component

Generalized form for an AR(p) model is

$$X_t \left(1 - \sum_{i=1}^p \phi_i B^i \right) = \varepsilon_t$$

Auto Regressive Integrated Moving Average models:

Auto Regressive Moving Average models:

ARMA (p, q)

Residuals of order 'q'
$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + ... + \phi_{p}X_{t-p} + \theta_{1}e_{t-1} + \theta_{2}e_{t-2} + ... + \theta_{q}e_{t-q} + e_{t}$$
 AR of order 'p'

First order differencing:

$$X_{t} - X_{t-1} = e_{t}$$

 $X_{t} - BX_{t} = e_{t}$
 $X_{t} (1 - B) = e_{t}$

Second order differencing:
$$X_{t}^{"} = X_{t}^{'} - X_{t-1}^{'}$$

$$= (X_{t} - X_{t-1}) - (X_{t-1} - X_{t-2})$$

$$= X_{t} - 2X_{t-1} + X_{t-2}$$

$$= X_{t} - 2BX_{t} + B^{2}X_{t}$$

$$= (1 - B)^{2} X_{t}$$

In general dth order difference is $(1-B)^d X_t$

ARIMA (1, 1, 1)
$$Y_{t} = X_{t} - X_{t-1}$$

$$Y_{t} = \phi_{1}Y_{t-1} + \theta_{1}e_{t-1} + e_{t}$$

$$X_{t} - X_{t-1} = \phi_{1}(X_{t-1} - X_{t-2}) + \theta_{1}e_{t-1} + e_{t}$$

$$X_{t} - BX_{t} = \phi_{1}(BX_{t} - B^{2}X_{t}) + \theta_{1}Be_{t} + e_{t}$$

$$X_{t}(1 - B - \phi_{1}B + \phi_{1}B^{2}) = e_{t}(1 + \theta_{1}B)$$

Procedure for fitting Box-Jenkins type time series models:

3 steps

- 1. Identification of the model structure
- 2. Parameter estimation and calibration
- 3. Model testing / Validation

- 1. Identification of the model structure:
 - Identify if the series is stationarity.
 - Plot correlogram (correlogram shows a rapid decay for a stationary series)
 - Remove non-stationarity if any by differencing/ standardization.
 - Obtain the order of AR and MA components of the model.
 - PAC determines the order of the AR process

For example, AR(1) process:

Another AR(2) process:

- Behavior of AR process:
 - Decaying auto correlation function (either exponentially or in a dampened sine wave)
 - Order of AR determined by the significant PAC's

- Behavior of MA process:
 - The order of MA is determined by the number of significant auto correlations
 - Decaying PAC function (either exponentially or in a dampened sine wave)