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Summary of the previous lecture

* Frequency domain analysis
— Spectral density
— Test for significance of periodicities
— Removing periodicities
— Standardizing the data



Frequency Domain Analysis

Spectral density (l,) is the amount of variance per

interval of frequency

Spectral analysis helps indentify the significant

periodicities themselves

A peak in the spectrum indicates an important
contribution to variance at frequencies close to the

peak

Prominent spikes indicate periodicity
Line spectrum - inconsistent estimate
Power spectrum - consistent estimate
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Example — 1
(Spectral Analysis)

Monthly Stream flow (in cumec) statistics(1979-2008) for a
river is selected for the study. (Part data shown below)

Year Month S.No. Flow N = 348

1979 June 1 54.6
July 2 325.4
August 3 509.5
September 4 99.4

October 5 53.5

November 6 25.8
December 7 12.5

1980 January 8 5.6

February 9 3.1

March 10 2.2

April 11 0.9

May 12 0.81




Example — 1 (contd.)
(Spectral Analysis)

The time series plot

Flow in Cumec
w S (o) (@2}




Example — 1 (contd.)

(Spectral Analysis)
Z,=X-Y,
Time series plot of Z,,

Y =u+q, cos(a)lt)+ /;’1 sin(a)lt)
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Example — 1 (contd.)
(Spectral Analysis)

15 Correlogram of
original series
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Example — 1 (contd.)

(Spectral Analysis) Power Spectrum

of original series

Power Spectrum of Z,
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Example — 1 (contd.)
(Spectral Analysis)

« Significance test:

“(N-2)
40,

Where y?= o? + 3% and

b, = i[i{xt ~ércos(ayt)- /;’sin(a)kt)}}

I=7

N | =
For first peak, .= 0.5236, a, = 29.28, ,=172.93

Therefore y2=29.28% + 172.932
= 30762



Example — 1 (contd.)
(Spectral Analysis)

b= [z{x _a, cos(wt)- sin(a)lt)}]

= L>< 36810.56
348

=105.78

y*(N-2) 30762(348-2)
4p, 4x105.78

[ = = 25155

From ‘F’ distribution table at 95% significance level,
F(2, 346) = 3.0



Example — 1 (contd.)
(Spectral Analysis)

[ >F(2,346)

Therefore the periodicity is significant.
The values for other periodicities are as follows

W, Statistic | F(2, N-2)
0.5236 | 25154 3.0
1.0472 | 11242 3.0
15708 | 4104 3.0
2.0944 1295 3.0




Example — 1 (contd.)

(Spectral Analysis)

The periodicities from the time series is removed

by transforming the series into a standardized one.

{Z' } where,

X, - X,
7, LoX)

1

The mean and standard
deviation for each month
Is tabulated.

The series {X;} is expressed as the new series

Month Mean Stdev.
Jun 117.49 52.24
Jul 474.50 150.18
Aug 421.39 126.53
Sep 145.94 77.65
Oct 66.61 30.67
Nov 22.99 13.26
Dec 10.30 9.82
Jan 5.55 9.16
Feb 1.91 0.74
Mar 1.09 0.54
Apr 0.76 0.51
May 0.80 0.60




Example — 1 (contd.)
(Spectral Analysis)

~(54.6-117.49)
' 5224

=-1.204 (June)

(325.4-474.5)

A ~-0.993 (Jul
2 150.18 (July)
. (509.5-421.39) 0696  (Auaust
ST 12653 (August)

And so on.



Example — 1 (contd.)
(Spectral Analysis)

 Series of Z', (part data shown)

Year Month S.No. X, VA
1979 June 1 54.6 -1.204
July 2 325.4 -0.993
August 3 509.5 0.696
September 4 99.4 -0.599
October 5 53.5 -0.428
November 6 25.8 0.212
December 7 12.5 0.224
1980 January 8 5.6 0.006
February 9 3.1 1.609
March 10 2.2 2.063
April 11 0.9 0.272
May 12 0.81 0.019




Example — 1 (contd.)

(Spectral Analysis) Timeseries of

original series

Time series of standardized data.  3* IIII““ .I““II ‘ .I II“
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Example — 1 (contd.)
(Spectral Analysis)

Correlogram of standardized data. .. Correlogram of

original series
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Example — 1 (contd.)
(Spectral Analysis)

Spectrum of standardized data.
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Example — 1 (contd.)
(Spectral Analysis)

Test for significance for standardized data:

W, Statistic | F(2, N-2)
0.5236 | -4.7E-12 3.0
1.0472 | -3.2E-12 3.0
15708 | -3.5E-11 3.0

[ <F(2,346)

The periodicities are insignificant



ARIMA MODELS



ARIMA Models

X,

Regression:
Y = (X, Xy, X3, Xy,--.)

Auto Regression:
X = Xty Xis Xigoe--)

e.g., AR(1), model
Xi = 01X t g

(Error, random component,
noise, residual)



ARIMA Models

AR(2), model
Xi = 04X + 02X + &

AR(p) model
Xt — (1)1Xt_1 + (I)th_z + o

P
Xl‘ = E¢jX;_j + Et
j=1

{¢;} are AR Parameters



Partial Auto Correlation

Partial Auto Correlation (PAC):

Indicates the dependence of X;on X, when the
dependence on all other variables X, ,, X;,,...,X¢, 1
are removed.

e.g.,Y is regressed upon X, and X,, then it is of interest
to ask how much explanatory power X, has if the
effect of X, are partialled out.

This means regressing Y on X,, getting the residual
errors from this analysis and regressing the
residuals with X,.



Partial Auto Correlation

Y =1(X,, X,)

Y =1(X,) {e} get the errors

X, =f(e) How much of the relationship is being explained
by X, alone

For AR(1), model
Xi=0X 4 + & ¢, Partial Auto Correlation (PAC) of order 1

For AR(2), model
Xi= 04X + 0K + & ¢, is the PAC of order 2



Partial Auto Correlation

AR(p) model
Xi= 0 Xiq + 0Xip o GpXip t &

¢, is the PAC of order p

Calculation of Partial Auto Correlations:

(Yule Walker equations) pt order Yule Walker
equations to get ¢,
Pp * q) = %
Auto Correlati On‘“\ Auto Correlations

function Partial Auto Correlation



Partial Auto Correlation

Gives partial auto correlation of order ‘p’
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Partial Auto Correlation

For PAC of order 1,

e ]=1e]

¢1=/01

ForPACoforder2, |1 A|[&]_[~
o 1] 02

¢1 + /01¢2 =0
/01¢1 + ¢2 =0,



Partial Auto Correlation
4+ o0 -p0)=p
B+ 00, - PiB =P,

| -
4 = Al /202)
1-p,
_/012 (1_102)

-0

_ P~ /02/012 — /012 t /02/012

¢2 =0,

C1-p, o, is PAC of order 2



Example — 2

Obtain the ¢, and ¢, for
r,=0.57,r,=0.07

Sinceﬁ;1 =T, ]V\J@

$,=057 - - gW’Q

/\ _ /02_1012

T 1-pof &
~0.07-0.57° /\ é— Q
©1-0.57 < R
=-0.38

28



ARIMA Models

Box Jenkins Time series models:
For stationary time series

If the time series is stationary, the correlogram dies
down fairly quickly (e.g., within 4 or 5 lags, in most

hydrologic applications)

If the time series is non stationary, the decay is very

slow
ot

Pk

A

VANANNAWLWA

Stationary time series

Non-stationary time series



ARIMA Models

 If the time series is non stationary, convert it to a
stationary time series

* One way is by standardizing the time series
described in spectral analysis

« Another way is by simply differencing the time
series.



ARIMA Models

 Differencing:
Y= X{ = X Xy
X, is First order differencing

X}=2,4,6,810, ....... Y3}=2,2,2, ......

A A

A / Yt

> >




ARIMA Models

X, =X, -X,

X, ’ is Second order differencing

X =X -X_,

t

=(X —XH)_(XH _Xt—Z)

t

=X, -2X,_+X,,



Example — 3

(Differencing)

Period,t X, X, X,
1 54.6 - -
2 325.4 -270.8 -
3 509.5 | -184.1 -86.7
4 99.4 410.1 -594.2
5 53.5 45.9 364.2
6 25.8 27.7 18.2
7 12.5 13.3 14.4
8 5.6 6.9 6.4
9 3.1 2.5 4.4
10 2.2 0.9 1.6
11 0.9 1.3 -0.4
12 0.81 0.09 1.21




Example — 4

Monthly Stream flow (in cumec) statistics(1979-2008) for a
river is selected for the study. (Part data shown below)

Year Month S.No. Flow
1979 June 1 54.6
July 2 325.4
August 3 509.5
September 4 99.4
October 5 53.5
November 6 25.8
December 7 12.5
1980 January 8 5.6
February 9 3.1
March 10 2.2
April 11 0.9
May 12 0.81

34



Example — 4 (contd.)

900 Time series
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Example — 4 (contd.)

First order differenced data, X, = X;- X, ,
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Second order differenced data
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Example — 4 (contd.)
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Example — 4 (contd.)

Third order differenced data

Time series
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Example — 4 (contd.)

Standardized data

7.000 ) i
6.000 Time series
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ARIMA Models

e QOperator ‘B’:
The effect of operator ‘B’ is to shift the argument
to that one step behind.

BX,= X4
BXi1 = Xz

AR (1) Model: X, = ¢p,X,q *+ &
X = ¢BX; + g
Xt\(1 - ¢1B)} = &
A{R (1) component




ARIMA Models

AR (2) Model: X, = ¢:X. . + 0, X, + ¢,
X = 01BX + 9,BX 4 + gy
Xi = ¢BX; + ¢,B°X + ¢,
Xt(:l - ¢B - 4)282} = &

AR (2) component

Generalized form for an AR(p) model is

Xt(l—iﬁ-Bi)=5t



ARIMA Models

Auto Regressive Integrated Moving Average models:

Order of differencing

ARIMA (p, d, q)

No. of Moving average

No. of Auto-regressive terms

terms



ARIMA Models

Auto Regressive Moving Average models:

ARMA (p, q)

Residuals of order ‘q’

4 \

Xi = 01 Xpq + o Xioh. .+ O X, + 018 + 0,8, +...+ B8,
\ J + et

AR of order ‘p’



ARIMA Models

First order differencing:

Xi— Xiq = €
X,— BX; = e
X, (1-B)=¢

Second order differencing: X, = X, - X,
=(X,-X_)-(X_-X_,)
=X, -2X,_,+X,,
=X, -2BX, + B*X,
-(1-B) X,



ARIMA Models

In general d*" order difference is (I—B)d X,

ARIMA (1, 1, 1) Y= X~ X,
Y =¢Y_+0e_ +e
X -X_=0(X_-X,_)+6e_ +e
X,-BX, = ¢ (BX, - B’X,)+6,Be, +e,

X,(1-B-¢B+¢B’)=e (1+6B)



ARIMA Models

Procedure for fitting Box-Jenkins type time series
models:

3 steps
1. Identification of the model structure
2. Parameter estimation and calibration
3. Model testing / Validation



ARIMA Models

1. Identification of the model structure:

« |dentify if the series is stationarity.

* Plot correlogram (correlogram shows a rapid
decay for a stationary series)

 Remove non-stationarity if any by differencing/
standardization.

* Obtain the order of AR and MA components of
the model.

 PAC determines the order of the AR process



ARIMA Models

For example, AR(1) process:
x. A P Exponentially decaying
t with only the first few

m\/]\/\/j\\/f/\/\‘\\ correlations significant

S Py

Time series t Correlogram
1 A

I(k) Lower frequencies Py Exactly one (the first

dominant one) PAC is significant
S
P Spect (Dk) """" o K-- -
ower spectrum PAC function



ARIMA Models

AR(2) process:

Decays in sinusoidal

A A
Xt Px ' wave form
——————— AT T,
P
>
Time series t Correlogram
A Dominant ,
1(k) frequencies ¢t | Exactly two PAC’s
are neither low | _Sig_r]'f'f?f‘f _____
nor high — _'_._'_'_._l_,_' _____ >
>

)
Power Spectrum k PAC function



ARIMA Models

Another AR(2) process:

A
- NN PASY
>
Time series t
A

Lower frequencies
dominant

Power Spectrum

>

Wy

Exponentially decaying

ot with many correlations
\\iigLficant

Correlogram

significant

%) j Exactly two PAC’ s

k
PAC function



ARIMA Models

« Behavior of AR process:

« Decaying auto correlation function (either
exponentially or in a dampened sine wave)

« Order of AR determined by the significant
PAC’s



ARIMA Models

MA(1) process:

Time series

Power Spectrum

>

Wy

A Exactly one auto

correlation function is

significant
e
Correlogram
A
I"r'>
PAC function k



ARIMA Models

MA(2) process:

>
Time series t
A
I(k)
>
Wy

Power Spectrum

Exactly two auto

) correlation functions
J significant
e e e
Correlogram
Decays in sinusoidal
O wave

k
PAC function



ARIMA Models

« Behavior of MA process:

« The order of MA is determined by the number
of significant auto correlations

« Decaying PAC function (either exponentially or
iIn @ dampened sine wave)



