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Summary	
  of	
  the	
  previous	
  lecture	
  

•  Example on Frequency domain analysis 
•  ARIMA models 

–  Partial Auto Correlation function 



Box Jenkins Time series models: 
•  For stationary time series 
•  If the time series is stationary, the correlogram dies 

down fairly quickly (e.g., within 4 or 5 lags, in most 
hydrologic applications) 

•  If the time series is non stationary, the decay is very 
slow 
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ARIMA Models 

Stationary time series	
   Non-stationary time series	
  



•  If the time series is non stationary, convert it to a 
stationary time series 

•  One way is by standardizing the time series 
described in spectral analysis 

•  Another way is by simply differencing the time 
series. 

 

4	
  

ARIMA Models 



•  Differencing: 
             
      Yt = Xt’ = Xt - Xt-1       
 

       Xt’ is First order differencing 
 
{Xt} = 2, 4, 6, 8, 10, …….                {Yt} = 2, 2, 2, …… 
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       Xt’’ is Second order differencing 
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Example – 3  
(Differencing) 

Period,t Xt Xt’  Xt’’  
1 54.6 - - 
2 325.4 -270.8 - 
3 509.5 -184.1 -86.7 
4 99.4 410.1 -594.2 
5 53.5 45.9 364.2 
6 25.8 27.7 18.2 
7 12.5 13.3 14.4 
8 5.6 6.9 6.4 
9 3.1 2.5 4.4 

10 2.2 0.9 1.6 
11 0.9 1.3 -0.4 
12 0.81 0.09 1.21 



Example – 4 
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Monthly Stream flow (in cumec) statistics(1979-2008) for a 
river is selected for the study. (Part data shown below) 

Year Month S.No. Flow 
1979 June 1 54.6 

July 2 325.4 
August 3 509.5 

September 4 99.4 
October 5 53.5 

November 6 25.8 
December 7 12.5 

1980 January 8 5.6 
February 9 3.1 

March 10 2.2 
April 11 0.9 
May 12 0.81 
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Example – 4 (contd.) 
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Example – 4 (contd.) 

10	
  

First order differenced data, Xt’ = Xt - Xt-1 	
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Example – 4 (contd.) 
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Second order differenced data	
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Example – 4 (contd.) 
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Third order differenced data	
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Example – 4 (contd.) 
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Standardized data	
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•  Operator ‘B’: 
The effect of operator ‘B’ is to shift the argument 
to that one step behind. 

             
      BXt =  Xt-1  

      BXt-1 =  Xt-2      
 

AR (1) Model:      Xt = φ1Xt-1 + εt   
                            Xt = φ1BXt + εt     
                            Xt(1 – φ1B) = εt                       
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AR (1) component	
  

ARIMA Models 



AR (2) Model:      Xt = φ1Xt-1 + φ2Xt-2 + εt   
                            Xt = φ1BXt + φ2BXt-1 + εt     
                            Xt = φ1BXt + φ2B2X + εt 
                            Xt(1 – φ1B – φ2B2) = εt                    
 
 
Generalized form for an AR(p) model is     
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Auto Regressive Integrated Moving Average models: 
          
 
 
                   ARIMA (p, d, q) 
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ARIMA Models 



Auto Regressive Moving Average models: 
          
 ARMA (p, q) 
 
Xt = φ1Xt-1 + φ2Xt-2+…+ φpXt-p + θ1et-1 + θ2et-2 +…+ θqet-q    
                                                                                 + et 
 
 

{et} is the residual series 
Assumptions : {et} has zero mean with uncorrelated terms 
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AR of order ‘p’	
  

Residuals of order ‘q’	
  

ARIMA Models 



First order differencing:	
  
    Xt – Xt-1 = et    
    Xt – BXt = et    
    Xt (1 – B) = et 
 
Second order differencing: 
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In general dth order difference is 
 
ARIMA (1, 1, 1) 
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Procedure for fitting Box-Jenkins type time series 
models: 
 
3 steps 

1.  Identification of the model structure 
2. Parameter estimation and calibration 
3. Model testing / Validation 
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ARIMA Models 



1.  Identification of the model structure: 

•  Identify if the series is stationarity. 
§  Plot correlogram (correlogram shows a rapid 

decay for a  stationary series) 
•  Remove non-stationarity if any by differencing/

standardization. 
•  Obtain the order of AR and MA components of 

the model. 
•  PAC determines the order of the AR process 
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ARIMA Models 



For example, AR(1) process: 

22	
  

t	
  	
  

xt	
  

Time series	
   Correlogram	
  

Power Spectrum	
   PAC function	
  

k	
  	
  

ρk	
  

ωk	
  	
  	
  

I(k)	
  

k	
  	
  

φk	
  

Exponentially decaying 
with only the first few 
correlations significant	
  

Lower frequencies 
dominant	
  

Exactly one (the first 
one) PAC is significant	
  

ARIMA Models 



AR(2) process: 
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Another AR(2) process: 
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•  Behavior of AR process: 

•  Decaying auto correlation function (either 
exponentially or in a dampened sine wave) 

•  Order of AR determined by the significant 
PAC’s 
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MA(1) process: 
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MA(2) process: 
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•  Behavior of MA process: 

•  The order of MA is determined by the number 
of significant auto correlations 

•  Decaying PAC function (either exponentially or 
in a dampened sine wave) 
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2.  Parameter estimation and calibration: 
 

•  Algorithms are available for parameter estimation  
•  e.g., Marquadt’s algorithm, available in most 

statistical tool boxes, “armax” toolbox in 
Matlab. 

•  For some algorithms, initial values of the 
parameters need to be supplied based on the 
Yule-Walker equations 

•  Solve the Yule-Walker equations of order ‘p’ and 
give the resulting φ1, φ2,….. φp as initial values of 
the AR parameters. 
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Estimation of initial values of MA parameters: 
 
         Xt =  et – θ1et-1 – θ2et-2  ……… – θqet-q   
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ARIMA Models 
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Example – 2 
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Obtain MA parameters for  r1 = 0.37 
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Example – 2 
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Matlab function “armax” syntax: 
 
  m = armax(data, orders) 
 
   ‘data’ : array of timeseries data 
   orders = [na, nb, nc] 
 
    na = order of AR parameters 
    nb = order of differencing 
    nc = order of MA parameters 
 



Model selection: 
•  Model selection is important in time series analysis 

as there are infinitely many possible models 
•  In general, AR parameters of order up to 6 and MA 

parameters of order up to 2 serve the purpose in 
most hydrologic applications. 

•  A model may be selected by using the following two 
criteria from among several candidate models 
–  Maximum likelihood rule (ML) 
–  Mean square error (MSE) 
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Maximum likelihood rule: 
•  A likelihood value for each of the candidate models 

is evaluated. 
•  The model with highest likelihood value is chosen. 
•  The general form of log-likelihood function for the ith 

model for a Gaussian process is  
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( )ˆln ,i i iL p z nφ⎡ ⎤= −⎣ ⎦

( )ln
2i i i
NL nσ= − −

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
  

This may be approximated as,	
  



Where Li is the likelihood value, 
z is the vector of historical series     
    is the vector of parameters and residual variance 
     (θ1,θ2,……..; φ1,φ2, ……; σi) 
σi is the residual variance and 
ni is the number of parameters 
 
•  As the number of parameters increase, the 

likelihood value decreases. 
•  The ML rule selects the models with a small 

number of parameters (principle of parsimony) 
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Mean square error (Prediction approach): 
 
•  Using a portion of available data (N/2) estimate the 

parameters of different models  
•  Forecast the series one step ahead by using the 

candidate models 
•  Estimate the MSE corresponding to each model 
•  The model with least value of MSE is selected for 

prediction 
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The one step ahead forecast for ARMA(p, q) is 
 
 
 
The error for one step ahead forecast is 
 
 
If the series consists on N observations, the first N/2 
observations are used for parameter estimation and N/
2+1 to N are used for error series calculation.  
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The MSE for model is   
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3.  Model testing / Validation: 
 
 
 
 
First ‘T’ values are used to build the model (say 50% 

of the available data) and the rest of data is used to 
validate the model. 

 
All the tests are carried out on the residual series only. 
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The tests are performed to examine whether the 
following assumptions used in building the model are 
valid for the model selection 
 

•  The residual series has zero mean 
•  No significant periodicities are present in the 

residual series 
•  The residual series is uncorrelated 
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Validation tests are listed here 
 

•  Significance of residual mean 
•  Significance of periodicities 
•  Cumulative periodogram test or Bartlett’s test 
•  White noise test 

•  Whittle’s test 
•  Portmanteau test 
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Significance of residual mean: 
 

•  This test examine the validity of the assumption 
that the error series e(t) has zero mean 

•  A statistic η(e) is defined as 

 

Where  
        is the estimate of the residual mean 
        is the estimate of the residual variance 
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Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
  



•  The statistic η(e) is approximately distributed as t
(α, N–1), where α is the significance level at 
which the test is being carried out. 

•  If the value of η(e) < t(α, N–1), then the mean of 
the residual series is not significantly different 
from zero – series passes the test. 
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Significance of periodicities: 
 

•  This test ensures that no significant periodicities 
are present in the residual series 

•  The test is conducted for different periodicities 
and the significance of each of the periodicities is 
tested. 

•  A statistic η(e) is defined as 
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Where  γ2= α2 + β2 
         
 
 
 
 
 
2π/ωk is the periodicity for which test is being carried 
out. 
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•  The statistic η(e) is approximately distributed as 
Fα(2, N–2 ), where α is the significance level at 
which the test is being carried out. 

•  If the value of η(e) < Fα(2, N–2 ), then the 
periodicity is not significant. 
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Cumulative periodogram test or Bartlett’s test : 
 

•  This test is also carried out to ensure that no 
significant periodicities are present in the residual 
series 

•  This test is conducted to detect the first 
significant periodicity in the series. 

•  If significant periodicity is observed, the first 
periodicity is removed and new series is obtained 
for which the test is repeated and checked for 
periodicity and so on. 
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                                                       k = 1,2,……N/2 
 
 
 
 
 
The plot of gk vs k is called as cumulative periodogram 
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Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
  



•  On the cumulative periodogram two confidence 
limits (+λ/(N/2)1/2)are drawn 

•  The value of λ prescribed for 95% confidence limits 
is 1.35 and for 99% confidence limits is 1.65 

•  If all the values of gk lie within the significance band, 
there is no significant periodicities in the series.  

•  If one value of gk lies outside the significance band, 
the periodicity corresponding to that value of gk is 
significant. 
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White noise test (Whittle’s test): 
 
•  This test is carried out to test the absence of 

correlation in the series. 
•  The covariance rk at lag k of the error series e(t) 

•  The value of kmax is normally chosen as 0.15N 

51	
  

ARIMA Models 

1

1 N

k j j k
j k

r e e
N k −

= +

=
− ∑ k = 0, 1, 2,…….kmax 	
  

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
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•  The covariance matrix is  
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kmax x kmax	
  



•  A statistic η(e) is defined as 

Where      is the lag zero correlation and 
 
 
 
The matrix Γn1-1 is constructed by eliminating the 
last row and the last column from the Γn1 matrix. 
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•  The statistic η(e) is approximately distributed as 
Fα(n1, N–n1 ), where α is the significance level at 
which the test is being carried out. 

•  If the value of η(e) < Fα(n1, N–n1 ), then the 
residual series is uncorrelated. 
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White noise test (Portmanteau test): 
 

•  This test is also carried out to test the absence of 
correlation in the series. 

•  This test also uses the covariance rk defined 
earlier.  

•  A statistic η(e) is defined as 
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( ) ( )
21

1 0

1
n

k

k

re N n
r

η
=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
  



•  The statistic η(e) is approximately distributed as 
χ2

α(n1), where α is the significance level at which 
the test is being carried out. 

•  The value of n1 is normally chosen as 0.15N 
•  If the value of η(e) < χ2

α(n1), then the residual 
series is uncorrelated. 
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Data Generation: 
Consider AR(1) model, 
        Xt = φ1Xt-1 + et     
   
φ1 = 0.5 therefore AR(1) model is  
 
        Xt = 0.5Xt-1 + et 
 
 
Let us choose standard normal deviates  
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Choose et terms with zero 
mean and uncorrelated	
  



Say X1 = 3.0 
 
        X2 = 0.5*3.0 + 0.335 
             = 1.835 
 
        X3 = 0.5*1.835 + 1.226 
             = 2.14 
 
And so on… 
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Consider ARMA(1, 1) model, 
        Xt = φ1Xt-1 + θ1et-1 + et     
   
φ1 = 0.5,  θ1 = 0.4  therefore the model is  
 
         
         Xt = 0.5Xt-1 + 0.4et-1 + et 
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ARIMA Models 

Choose et-1 terms as 
previous et and set initial 
value as zero	
  

Standard normal deviates	
  



Say X1 = 3.0 
 
        X2 = 0.5*3.0 + 0.4*0 + 0.667 
             = 2.167 
 
        X3 = 0.5*2.167 + 0.4*0.667 + 1.04 
             = 2.39 
 
        X4 = 0.5*2.39 + 0.4*1.04 + 2.156 
             = 3.767                                            and so 

on... 
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Data Forecasting: 
Consider AR(1) model, 
        Xt = φ1Xt-1 + et     
   
Expected value is considered. 
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[ ] [ ] [ ]1 1

1 1
ˆ

t t t

t t

E X E X E e

X X

φ

φ

−

−

= +

=
Expected value of et is zero	
  



Consider ARMA(1, 1) model, 
        Xt = φ1Xt-1 + θ1et-1 + et    
  
      E[Xt] = φ1Xt-1 + θ1et-1 + 0 
   
 
 
φ1 = 0.5,  θ1 = 0.4  therefore the model is  
         
         Xt = 0.5Xt-1 + 0.4et-1 
 
 
 
 
 
 
 
 

62	
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Error in forecast in the 
previous period	
  



Say X1 = 3.0 
 
 
 
X2 = 2.8 
Error e2 = 2.8 – 1.5 = 1.3  
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2
ˆ 0.5 3.0 0.4 0

1.5
X = × + ×

=

Initial error assumed to 
be zero	
  

3
ˆ 0.5 2.8 0.4 1.3

1.92
X = × + ×

=
Actual value to be used	
  



X3 = 1.8 
Error e3 = 1.8 – 1.92 = -0.12  
 
 
 
 
and so on... 
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( )4
ˆ 0.5 1.8 0.4 0.12

0.852
X = × + × −

=



Markov Chains: 
•  Markov chain is a stochastic process with the 

property that value of process Xt  at time t depends 
on its value at time t-1 and not on the sequence of 
other values (Xt-2 , Xt-3,……. X0) that the process 
passed through in arriving at Xt-1. 
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[ ] [ ]1 2 0 1, ,.....t t t t tP X X X X P X X− − −=

Single step Markov 
chain	
  



•  The conditional probability gives the probability at 
time t will be in state ‘j’, given that the process 
was in state ‘i’ at time t-1. 

•  The conditional probability is independent of the 
states occupied prior to t-1. 

•  For example, if Xt-1 is a dry day, what is the 
probability that Xt is a dry day or a wet day. 

•  This probability is commonly called as transitional 
probability 
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1t j t iP X a X a−⎡ ⎤= =⎣ ⎦



•  Usually written as      indicating the probability of a 
step from ai to aj at time ‘t’. 

•  If  Pij is independent of time, then the Markov chain 
is said to be homogeneous. 
     
     i.e.,                      v    t and  τ 
 
 the transitional probabilities remain same across 
time 
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t
ijP

1
t

t j t i ijP X a X a P−⎡ ⎤= = =⎣ ⎦

t t
ij ijP P τ+=



Transition Probability Matrix(TPM): 
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1         2          3       .       .      m 

11 12 13 1

21 22 23 2

31

1 2

. .

. .

.

.

m

m

m m mm

P P P P
P P P P
P

P

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 

2 

3 

   . 

m 

   . 

m x m	
  

t+1 
   t 



 
 
 
•  Elements in any row of TPM sum to unity 

(stochastic matrix) 
•  TPM can be estimated from observed data by 

tabulating the number of times the observed data 
went from state ‘i’ to ‘j’ 

•  Pj 
(n) is the probability of being in state ‘j’ in the 

time step ‘n’. 
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v j 
1

1
m

ij
j
P

=

=∑



•  pj
(0) is the probability of being in state ‘j’ in period    

t = 0. 

•  Let p(0) is given and TPM is given 
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( ) ( ) ( ) ( )0 0 0 0
1 2 1

. . m m
p p p p

×
⎡ ⎤= ⎣ ⎦

…. Probability 
vector at time 0 

( ) ( ) ( ) ( )
1 2 1

. .n n n n
m m

p p p p
×

⎡ ⎤= ⎣ ⎦
…. Probability 

vector at time 
‘n’ 

( ) ( )1 0p p P= ×
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( ) ( ) ( ) ( )

11 12 13 1

21 22 23 2
1 0 0 0

1 2 31

1 2

. .

. .
. .

.

m

m

m

m m mm

P P P P
P P P P

p p p p P

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

( ) ( ) ( )0 0 0
1 11 2 21 1.... m mp P p P p P= + + + …. Probability of 

going to state 1 

( ) ( ) ( )0 0 0
1 12 2 21 2.... m mp P p P p P= + + + …. Probability of 

going to state 2 
And so on… 



Therefore 
 
 
 
 
 
 
 

In general, 
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( ) ( ) ( ) ( )1 1 1 1
1 2 1

. . m m
p p p p

×
⎡ ⎤= ⎣ ⎦

( ) ( )

( )

( )

2 1

0

0 2

p p P

p P P

p P

= ×

= × ×

= ×

( ) ( )0n np p P= ×



•  As the process advances in time, pj
(n) becomes less 

dependent on p(0) 
•  The probability of being in state ‘j’ after a large 

number of time steps becomes independent of the 
initial state of the process. 

•  The process reaches a steady state ay very large n 

•  As the process reach steady state, TPM remains 
constant 
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np p P= ×



Example – 2 
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Consider the TPM for a 2-state (state 1 is non-rainfall day 
and state 2 is rainfall day) first order homogeneous 
Markov chain as  
 
 
 
Obtain the  
1.  probability of day 1 is non-rainfall day / day 0 is 

rainfall day  
2.  probability of day 2 is rainfall day / day 0 is non-

rainfall day  
3.  probability of day 100 is rainfall day / day 0 is non-

rainfall day 

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥
⎣ ⎦



Example – 2 (contd.) 
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1.  probability of day 1 is non-rainfall day / day 0 is 
rainfall day  

The probability is 0.4 
 

2.  probability of day 2 is rainfall day / day 0 is non-
rainfall day  

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

No rain 

rain 

No rain rain 

( ) ( )2 0 2p p P= ×



Example – 2 (contd.) 
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   The probability is 0.39 
 

3.  probability of day 100 is rainfall day / day 0 is non-
rainfall day  

( ) [ ]

[ ]

2 0.7 0.3
0.7 0.3

0.4 0.6

0.61 0.39

p ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

( ) ( )0n np p P= ×



Example – 2 (contd.) 
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2

4 2 2

8 4 4

16 8 8

0.7 0.3 0.7 0.3 0.61 0.39
0.4 0.6 0.4 0.6 0.52 0.48

0.5749 0.4251
0.5668 0.4332

0.5715 0.4285
0.5714 0.4286

0.5714 0.4286
0.5714 0.4286

P P P

P P P

P P P

P P P

= ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= × = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × = ⎢ ⎥

⎣ ⎦



Example – 2 (contd.) 
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Steady state probability 

    

[ ]

[ ]

0.5714 0.4286
0.5714 0.4286

0.5714 0.4286

0.5714 0.4286

np p P= ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

 
 
 
For steady state, 

[ ]0.5714 0.4286p =


