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Summary	
  of	
  the	
  previous	
  lecture	
  

•  Behavior of AR and MA process 
•  Parameter estimation 

–  Matlab function “armax” 
•  Model selection 

–  Maximum likelihood rule 
 



Mean square error, MSE (Prediction approach): 
 
•  Using a portion of available data (N/2) estimate the 

parameters of different models  
•  Forecast the series one step ahead by using the 

candidate models 
•  Estimate the MSE corresponding to each model 
•  The model with least value of MSE is selected for 

prediction 
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ARIMA Models 



The one step ahead forecast for ARMA(p, q) is 
 
 
 
The error for one step ahead forecast is 
 
 
If the series consists on N observations, the first N/2 
observations are used for parameter estimation and N/
2+1 to N are used for error series calculation.  
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ARIMA Models 
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The MSE for model is   
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ARIMA Models 
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3.  Model testing / Validation: 
 
 
 
 
First ‘T’ values are used to build the model (say 50% 

of the available data) and the rest of data is used to 
validate the model. 

 
All the tests are carried out on the residual series only. 
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ARIMA Models 

X1 

Calibration data Test data 

XT XN XT-2 XT-1 XT+1 



The tests are performed to examine whether the 
following assumptions used in building the model are 
valid for the model selection 

•  The residual series has zero mean 
•  No significant periodicities are present in the 

residual series 
•  The residual series is uncorrelated 
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ARIMA Models 
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Validation tests are listed here 
 

•  Significance of residual mean 
•  Significance of periodicities 
•  Cumulative periodogram test or Bartlett’s test 
•  White noise test 

•  Whittle’s test 
•  Portmanteau test 
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ARIMA Models 



Significance of residual mean: 
 

•  This test examines the validity of the assumption 
that the error series e(t) has zero mean 

•  A statistic η(e) is defined as 

 

Where  
        is the estimate of the residual mean 
        is the estimate of the residual variance 
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Significance of residual mean 
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Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York , 1976	
  



•  The statistic η(e) is approximately distributed as t
(α, N–1), where α is the significance level at 
which the test is being carried out. 

•  If the value of η(e) < t(α, N–1), then the mean of 
the residual series is not significantly different 
from zero – series passes the test. 
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Significance of residual mean 



Significance of periodicities: 
 

•  This test ensures that no significant periodicities 
are present in the residual series 

•  The test is conducted for different periodicities 
and the significance of each of the periodicities is 
tested. 

•  A statistic η(e) is defined as 
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Significance of periodicities 
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2π/ωk is the periodicity for which test is being carried 
out. 
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Significance of periodicities 
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•  The statistic η(e) is approximately distributed as 
Fα(2, N–2 ), where α is the significance level at 
which the test is being carried out. 

•  If the value of η(e) < Fα(2, N–2 ), then the 
periodicity is not significant. 
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Significance of periodicities 



Cumulative periodogram test or Bartlett’s test : 
 

•  This test is also carried out to examine significant 
periodicities in the residual series 

•  This test is more convenient computationally and 
is preferred because of its ability to test all the 
periodicities at a time. 

14	
  

Bartlett’s test 



 
 
                                                       k = 1,2,……N/2 
 
 
 
 
 
The plot of gk vs k is called as cumulative periodogram 
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Bartlett’s test 
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Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York , 1976	
  



•  On the cumulative periodogram two confidence 
limits (λ/(N/2)1/2) are drawn on either side of line 
joining (0, 0) and (N/2, 1) 

•  The value of λ prescribed for 95% confidence limits 
is 1.35 and for 99% confidence limits is 1.65 

•  If all the values of gk lie within the significance band, 
there is no significant periodicities in the series.  

•  If a value of gk lies outside the significance band, the 
periodicity corresponding to that value of gk is 
significant. 
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Bartlett’s test 
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Bartlett’s test 
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White noise test (Whittle’s test): 
 
•  This test is carried out to test the absence of 

correlation in the series. 
•  The covariance rk at lag k of the error series e(t) 

•  The value of kmax is normally chosen as 0.15N 
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Whittle’s test for white noise 
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Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
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•  The covariance matrix is  
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Whittle’s test for white noise 

kmax x kmax	
  



•  A statistic η(e) is defined as 

Where      is the lag zero correlation =1, and 
 
 
 
The matrix Γn1-1 is constructed by eliminating the 
last row and the last column from the Γn1 matrix. 
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Whittle’s test for white noise 
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•  The statistic η(e) is approximately distributed as 
Fα(n1, N–n1 ), where α is the significance level at 
which the test is being carried out. 

•  If the value of η(e) < Fα(n1, N–n1 ), then the 
residual series is uncorrelated. 
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Whittle’s test for white noise 



White noise test (Portmanteau test): 
 

•  This test is also carried out to test the absence of 
correlation in the series. 

•  This test also uses the covariance rk defined 
earlier.  

•  A statistic η(e) is defined as 
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Portmanteau test for white noise 
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Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
  



•  The statistic η(e) is approximately distributed as 
χ2

α(n1), where α is the significance level at which 
the test is being carried out. 

•  The value of n1 is normally chosen as 0.15N 
•  If the value of η(e) < χ2

α(n1), then the residual 
series is uncorrelated. 

•  Kashyap & Rao(1976) have proved that the 
Portmanteau test  is uniformly inferior to 
Whittle’s test and recommended the latter for 
applications. 
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Portmanteau test for white noise 

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical 
data”, Academic press, New York 	
  



Data Generation: 
Consider AR(1) model, 
        Xt = φ1Xt-1 + et     
   
e.g., φ1 = 0.5 : AR(1) model is  
 
        Xt = 0.5Xt-1 + et 
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ARIMA Models 

Choose et terms with zero 
mean and uncorrelated	
  



Say X1 = 3.0 
 
        X2 = 0.5*3.0 + 0.335 
             = 1.835 
 
        X3 = 0.5*1.835 + 1.226 
             = 2.14 
 
And so on… 
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ARIMA Models 



Consider ARMA(1, 1) model, 
        Xt = φ1Xt-1 + θ1et-1 + et     
   
e.g., φ1 = 0.5,  θ1 = 0.4 : ARMA(1, 1) model is written as 
 
         
         Xt = 0.5Xt-1 + 0.4et-1 + et 
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ARIMA Models 

Choose et-1 terms as 
previous et and set initial 
value as zero	
  

with zero mean and 
uncorrelated	
  



Say X1 = 3.0 
 
        X2 = 0.5*3.0 + 0.4*0 + 0.667 
             = 2.167 
 
        X3 = 0.5*2.167 + 0.4*0.667 + 1.04 
             = 2.39 
 
        X4 = 0.5*2.39 + 0.4*1.04 + 2.156 
             = 3.767                                            and so 

on... 
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ARIMA Models 



Data Forecasting: 
Consider AR(1) model, 
        Xt = φ1Xt-1 + et     
   
Expected value is considered. 
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ARIMA Models 
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Consider ARMA(1, 1) model, 
        Xt = φ1Xt-1 + θ1et-1 + et    
  
      E[Xt] = φ1Xt-1 + θ1et-1 + 0 
   
 
 
e.g., φ1 = 0.5,  θ1 = 0.4: Forecast model is written as 
         
         Xt = 0.5Xt-1 + 0.4et-1 
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ARIMA Models 

Error in forecast in the 
previous period	
  



Say X1 = 3.0 
 
 
 
X2 = 2.8 
Error e2 = 2.8 – 1.5 = 1.3  
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ARIMA Models 
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X3 = 1.8 
Error e3 = 1.8 – 1.92 = -0.12  
 
 
 
 
and so on. 
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ARIMA Models 
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Markov Chains: 
•  Markov chain is a stochastic process with the 

property that value of process Xt  at time t depends 
on its value at time t-1 and not on the sequence of 
other values (Xt-2 , Xt-3,……. X0) that the process 
passed through in arriving at Xt-1. 
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Markov Chains 
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•  The conditional probability gives the probability at 
time t will be in state ‘j’, given that the process 
was in state ‘i’ at time t-1. 

•  The conditional probability is independent of the 
states occupied prior to t-1. 

•  For example, if Xt-1 is a dry day, what is the 
probability that Xt is a dry day or a wet day. 

•  This probability is commonly called as transitional 
probability 
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Markov Chains 
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•  Usually written as      indicating the probability of a 
step from ai to aj at time ‘t’. 

•  If  Pij is independent of time, then the Markov chain 
is said to be homogeneous. 
     
     i.e.,                      v    t and  τ 
 
 the transitional probabilities remain same across 
time 
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Transition Probability Matrix(TPM): 
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Markov Chains 
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•  Elements in any row of TPM sum to unity 

(stochastic matrix) 
•  TPM can be estimated from observed data by 

tabulating the number of times the observed data 
went from state ‘i’ to ‘j’ 

•  Pj 
(n) is the probability of being in state ‘j’ in the 

time step ‘n’. 
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•  pj
(0) is the probability of being in state ‘j’ in period    

t = 0. 

•  Let p(0) is given and TPM is given 
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Markov Chains 
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Markov Chains 
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And so on… 



Therefore 
 
 
 
 
 
 
 

In general, 
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Markov Chains 
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•  As the process advances in time, pj
(n) becomes less 

dependent on p(0) 
•  The probability of being in state ‘j’ after a large 

number of time steps becomes independent of the 
initial state of the process. 

•  The process reaches a steady state ay very large n 

•  As the process reach steady state, TPM remains 
constant 
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Markov Chains 
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Example – 1 
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Consider the TPM for a 2-state (state 1 is non-rainfall day 
and state 2 is rainfall day) first order homogeneous 
Markov chain as  
 
 
 
Obtain the  
1.  probability of day 1 is non-rainfall day / day 0 is 

rainfall day  
2.  probability of day 2 is rainfall day / day 0 is non-

rainfall day  
3.  probability of day 100 is rainfall day / day 0 is non-

rainfall day 

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥
⎣ ⎦



Example – 1 (contd.) 
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1.  probability of day 1 is non-rainfall day / day 0 is 
rainfall day  

The probability is 0.4 
 

2.  probability of day 2 is rainfall day / day 0 is non-
rainfall day  

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

No rain 

rain 

No rain rain 

( ) ( )2 0 2p p P= ×



Example – 1 (contd.) 
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   The probability is 0.39 
 

3.  probability of day 100 is rainfall day / day 0 is non-
rainfall day  

( ) [ ]

[ ]
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0.7 0.3
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0.61 0.39
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Example – 1 (contd.) 
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Example – 1 (contd.) 
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Steady state probability 

    

[ ]
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For steady state, 

[ ]0.5714 0.4286p =


