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Summary	
  of	
  the	
  previous	
  lecture	
  

–  Case study -3: Monthly streamflows at KRS 
reservoir 

•  Validation of the model 
–  Case study -4: Monthly streamflow of a river 

•  Plots of Time series, Correlogram, Partial 
Autocorrelation function and Power spectrum 

•  Candidate ARMA models  
– Log Likelihood 
– Mean square error 
– Validation test (Residual mean) 

 
 



CASE STUDIES - 
ARMA MODELS 
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Case study – 5 
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Sakleshpur  Annual Rainfall Data (1901-2002) 
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Case study – 5 (Contd.) 
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Case study – 5 (Contd.) 
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   PAC function                             Power spectrum 
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 Pp *  φp = ρp      
Auto Correlations 

Partial Auto Correlation 
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function 



Case study – 5 (Contd.) 
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Model  Likelihood 
AR(1)  9.078037 
AR(2)  8.562427 
AR(3)  8.646781 
AR(4)  9.691461 
AR(5)  9.821681 
AR(6)  9.436822 

ARMA(1,1)  8.341717 
ARMA(1,2)  8.217627 
ARMA(2,1)  7.715415 
ARMA(2,2)  5.278434 
ARMA(3,1)  6.316174 
ARMA(3,2)  6.390390 



Case study – 5 (Contd.) 
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•  ARMA(5,0) is selected with highest likelihood 
value 

•  The parameters for the selected model are as 
follows 
φ1 = 0.40499 
φ2 = 0.15223 
φ3 = -0.02427 
φ4 = -0.2222 
φ5 = 0.083435 
Constant = -0.000664 



Case study – 5 (Contd.) 
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•  Significance of residual mean 

Model η(e) t0.95(N ) 
ARMA(5,0) 0.000005 1.6601 



Significance of periodicities: 
 

Case study – 5 (Contd.) 

10	
  

Periodicity η F0.95(2, N-2 ) 

1st  0.000 3.085 

2nd  0.00432 3.085 

3rd  0.0168 3.085 

4th  0.0698 3.085 

5th  0.000006 3.085 

6th  0.117 3.085 



Case study – 5 (Contd.) 

11	
  

•  Whittle’s white noise test: 

Model η F0.95(n1, N–n1) 
ARMA(5,0) 0.163 1.783 



Case study – 5 (Contd.) 
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Model MSE  
AR(1)  1.180837  
AR(2)  1.169667  
AR(3)  1.182210  
AR(4)  1.168724  
AR(5)  1.254929  
AR(6)  1.289385  

ARMA(1,1)  1.171668  
ARMA(1,2)  1.156298  
ARMA(2,1)  1.183397  
ARMA(2,2)  1.256068  
ARMA(3,1)  1.195626  
ARMA(3,2)  27.466087  



Case study – 5 (Contd.) 
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•  ARMA(1, 2) is selected with least MSE value for 
one step forecasting 

•  The parameters for the selected model are as 
follows 
φ1 = 0.35271 
 
θ1 = 0.017124 
θ2 = -0.216745 
Constant = -0.009267 



Case study – 5 (Contd.) 
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•  Significance of residual mean 

Model η(e) t0.95(N ) 
ARMA(1, 2) -0.0026 1.6601 



Significance of periodicities: 
 

Case study – 5 (Contd.) 
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Periodicity η F0.95(2, N-2 ) 

1st  0.000 3.085 

2nd  0.0006 3.085 

3rd  0.0493 3.085 

4th  0.0687 3.085 

5th  0.0003 3.085 

6th  0.0719 3.085 



Case study – 5 (Contd.) 
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•  Whittle’s white noise test: 

Model η F0.95(n1, N–n1) 
ARMA(1, 2) 0.3605 1.783 



SUMMARY OF CASE STUDIES  
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Summary of Case studies 
Case study-1:Time series plot 
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Daily rainfall data of Bangalore city  Monthly rainfall data of Bangalore city  
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Summary of Case studies 
Case study-1: Correlogram 
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Daily rainfall data of Bangalore city  Monthly rainfall data of Bangalore city  

Yearly rainfall data of Bangalore city  



Summary of Case studies 
Case study-1: Power spectrum 
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Daily rainfall data of Bangalore city  Monthly rainfall data of Bangalore city  

Yearly rainfall data of Bangalore city  
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Summary of Case studies 
Time series plot 
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4. Monthly stream flow data of a river 
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3. Monthly stream flow data for Cauvery 

5. Sakleshpur  Annual Rainfall Data 



Summary of Case studies 
Correlogram 
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4. Monthly stream flow data of a river 3. Monthly stream flow data for Cauvery 

5. Sakleshpur  Annual Rainfall Data 



Summary of Case studies 
Power spectrum 
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4. Monthly stream flow data of a river 3. Monthly stream flow data for Cauvery 
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Summary of Case studies 
ARMA Models 
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3. Monthly stream flow data for Cauvery 
ARMA(4, 0) – For data generation 
ARMA(1, 0) – For one step forecasting 
 
4. Monthly stream flow data of a river 
ARMA (8, 0) – For both data generation & one step 
forecasting 
 
5. Sakleshpur  Annual Rainfall Data 
ARMA(5, 0) – For data generation 
ARMA(1, 2) – For one step forecasting 
 
 
 



MARKOV CHAINS 



 
•  A Markov chain is a stochastic process with the 

property that value of process Xt  at time t depends 
on its value at time t-1 and not on the sequence of 
other values (Xt-2 , Xt-3,……. X0) that the process 
passed through in arriving at Xt-1. 
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Markov Chains 

[ ] [ ]1 2 0 1, ,.....t t t t tP X X X X P X X− − −=

Single step Markov 
chain	
  



•  This conditional probability gives the probability at 
time t will be in state ‘j’, given that the process 
was in state ‘i’ at time t-1. 

•  The conditional probability is independent of the 
states occupied prior to t-1. 

•  For example, if Xt-1 is a dry day, we would be 
interested in the probability that Xt is a dry day or a 
wet day. 

•  This probability is commonly called as transition 
probability 
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Markov Chains 

1t j t iP X a X a−⎡ ⎤= =⎣ ⎦



•  Usually written as      indicating the probability of a 
step from ai to aj at time ‘t’. 

•  If  Pij is independent of time, then the Markov chain 
is said to be homogeneous. 
     
     i.e.,                      v    t and  τ 
 
 the transition probabilities remain same across 
time 
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Markov Chains 
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Transition Probability Matrix(TPM): 
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Markov Chains 
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•  Elements in any row of TPM sum to unity  
•  TPM can be estimated from observed data by 

enumerating the number of times the observed 
data went from state ‘i’ to ‘j’ 

•  Pj 
(n) is the probability of being in state ‘j’ in time 

step ‘n’. 
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Markov Chains 
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•  pj
(0) is the probability of being in state ‘j’ in period    

t = 0. 

•  If p(0) is given and TPM is given 
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Markov Chains 

( ) ( ) ( ) ( )0 0 0 0
1 2 1

. . m m
p p p p

×
⎡ ⎤= ⎣ ⎦

…. Probability 
vector at time 0 

( ) ( ) ( ) ( )
1 2 1

. .n n n n
m m

p p p p
×

⎡ ⎤= ⎣ ⎦
…. Probability 

vector at time 
‘n’ 

( ) ( )1 0p p P= ×



32	
  

Markov Chains 
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Therefore 
 
 
 
 
 
 
 

In general, 
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Markov Chains 
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•  As the process advances in time, pj
(n) becomes less 

dependent on p(0) 
•  The probability of being in state ‘j’ after a large 

number of time steps becomes independent of the 
initial state of the process. 

•  The process reaches a steady state at large n 

•  As the process reaches steady state, the 
probability vector remains constant 
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Markov Chains 

np p P= ×



Example – 1 
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Consider the TPM for a 2-state first order homogeneous 
Markov chain as  
 
 
 
 
State 1 is a non-rainy day and state 2 is a rainy day 
Obtain the  
1.  probability of day 1 is non-rainfall day / day 0 is rainfall day  
2.  probability of day 2 is rainfall day / day 0 is non-rainfall day  
3.  probability of day 100 is rainfall day / day 0 is non-rainfall 

day 

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥
⎣ ⎦



Example – 1 (contd.) 

36	
  

1.  probability of day 1 is non-rainfall day / day 0 is 
rainfall day  

The probability is 0.4 
 

2.  probability of day 2 is rainfall day / day 0 is non-
rainfall day  

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

No rain 

rain 

No rain rain 

( ) ( )2 0 2p p P= ×



Example – 1 (contd.) 
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   The probability is 0.39 
 

3.  probability of day 100 is rainfall day / day 0 is non-
rainfall day  

( ) [ ]

[ ]

2 0.7 0.3
0.7 0.3

0.4 0.6

0.61 0.39

p ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

( ) ( )0n np p P= ×



Example – 1 (contd.) 
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Example – 1 (contd.) 
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Steady state probability 

    

[ ]

[ ]

0.5714 0.4286
0.5714 0.4286

0.5714 0.4286

0.5714 0.4286

np p P= ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

 
 
 
For steady state, 

[ ]0.5714 0.4286p =


