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Summary of the previous lecture

— Case study -3: Monthly streamflows at KRS
reservoir

« Validation of the model
— Case study -4: Monthly streamflow of a river

 Plots of Time series, Correlogram, Partial
Autocorrelation function and Power spectrum

« Candidate ARMA models
— Log Likelihood
—Mean square error
— Validation test (Residual mean)



CASE STUDIES -
ARMA MODELS



Case study — 5

Sakleshpur Annual Rainfall Data (1901-2002)
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Case study — 5 (Contd.)

Correlogram
sample Autocorrelation Function (ACH)
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Case study — 5 (Contd.)

PAC function Power spectrum
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Case study — 5 (Contd.)

Model Likelihood
AR(1) 9.078037
AR(2) 8.562427
AR(3) 8.646781
AR(4) 9.691461
AR(5) 9.821681
AR(6) 9.436822
ARMA(1,1) 8.341717
ARMA(1,2) 8.217627
ARMA(2,1) 7.715415
ARMA(2,2) 5.278434
ARMA(3,1) 6.316174
ARMA(3,2) 6.390390




Case study — 5 (Contd.)

 ARMA(5,0) is selected with highest likelihood
value

« The parameters for the selected model are as
follows

¢4 = 0.40499

¢, = 0.15223

d5 = -0.02427

d, = -0.2222

¢s = 0.083435
Constant = -0.000664



Case study — 5 (Contd.)

« Significance of residual mean / ‘S'L

Model n(e) thos(N )
ARMA(5,0) 0.000005 1.6601




Case study — 5 (Contd.)

Significance of periodicities:

Periodicity M Foes(2, N-2)
1st 0.000 3.085
2nd 0.00432 3.085
3rd 0.0168 3.085
4th 0.0698 3.085
5th 0.000006 3.085
6th 0.117 3.085




Case study — 5 (Contd.)

« Whittle’ s white noise test:

Model M Fyes(n1, N=n1)

ARMA(5,0) 0.163 1.783




Case study — 5 (Contd.)

Model MSE
AR(1) 1.180837
AR(2) 1.169667
AR(3) 1.182210
AR(4) 1.168724
AR(5) 1.254929
AR(6) 1.289385
ARMA(1,1) 1.171668
ARMA(1,2) 1.156298
ARMA(2,1) 1.183397
ARMA(2,2) 1.256068
ARMA(3,1) 1.195626
ARMA(3,2) 27.466087
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Case study — 5 (Contd.)

 ARMA(1, 2) is selected with least MSE value for
one step forecasting

« The parameters for the selected model are as
follows

¢, = 0.35271 ARMﬁ(i, z)/
Q

0, = 0.017124 Xt . CP,)&,V\* AT

0, = -0.216745 . é/@{fl e,

Constant = -0.009267 >
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Case study — 5 (Contd.)

 Significance of residual mean

Model nee) to.os(N )

ARMA(1, 2) -0.0026 1.6601




Case study — 5 (Contd.)

Significance of periodicities:

Periodicity M Foes(2, N-2)
1st 0.000 3.085
2nd 0.0006 3.085
3rd 0.0493 3.085
4th 0.0687 3.085
5th 0.0003 3.085
6th 0.0719 3.085




Case study — 5 (Contd.)

« Whittle’ s white noise test:
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SUMMARY OF CASE STUDIES



Summary of Case studies
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Sample Autocorrelation
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Summary of Case studies

Sample Autocorrelation Function

Sample Auto elation Function

Case study-1: Correloqram
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Summary of Case studies

Case study-1: Power spectrum

¥ 10

" - ; - 1.481 . . . .
[ —— Power spectrum plat d] |

1.48

Power spectrum plot m

1.479
1.478

1.477 |

398 NNWM 7 14761
Wbl
392 02 04 06 08 1 T2 T2 16 o _V\'/“\FJ L\NJ,L’V‘\'—,A“’V‘W

1.473

——

L L L L
o 0.5 1 5 2 25 3 3.5

Daily rainfall data of Bangalore city Monthly rainfall data of Bangalore city

7.7109 T

7.7108

7.7108

7.7108

7.7107

77107

7.7106

7.7105

77105

7.7104 L L

Yearly rainfall data of Bangalore city

5

20



Summary of Case studies

Time series plot
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Summary of Case studies

Correlogram

Sample Autocorrelation Function
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Summary of Case studies

Power spectrum
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Summary of Case studies
ARMA Models

3. Monthly stream flow data for Cauvery
ARMA(4, 0) — For data generation

ARMA(1, 0) — For one step forecasting w&/
/ /

4. Monthly stream flow data of a river

ARMA (8, 0) — For both data generation & one step
forecasting

(W

5. Sakleshpur Annual Rainfall Data
ARMA(S, 0) — For data generation
ARMA(1, 2) — For one step forecasting



MARKOV CHAINS



Markov Chains

A Markov chain is a stochastic process with the
property that value of process X, at time t depends
on its value at time t-1 and not on the sequence of

other values (X, , Xi3,.-..... X,) that the process
passed through in arriving at X ;.

PlX, /X X X, |=P[ X, /X, ]

L’Single step Markov
chain



Markov Chains

P[Xt =a, /X, =al.]

This conditional probability gives the probability at
time t will be in state ‘j’, given that the process
was in state ‘i’ at time t-1.

The conditional probability is independent of the
states occupied prior to t-1.

For example, if X,_, is a dry day, we would be
interested in the probability that X, is a dry day or a
wet day.

This probability is commonly called as transition
probability



Markov Chains

P[ X, =a /X, —a] P

e Usually written as Pl.; indicating the probability of a
step from a; to a, at time 't

* If Pyis independent of time, then the Markov chain
Is said to be homogeneous.

i.e., Pt P”’ v tand T

the transition probabilities remain same across
time



Markov Chains

Transition Probability Matrix(TPM):

t+1—> 1 2 3 : . m
t
2
1 B, B, B B,
2 | B B, B b,
P 3 | B
m _Pml Pm2 Pmm

- mXxXm



Markov Chains

;@=1w

Elements in any row of TPM sum to unity

TPM can be estimated from observed data by
enumerating the number of times the observed
data went from state ‘i’ to j’

P, (" is the probability of being in state j" in time
step ‘n’.



Markov Chains

- p9is the probability of being in state ‘j° in period

(0) _ [0 0 (0) ... Probability
P [pl A ]lxm vector at time 0
" = [ p"p pfn”)]1 ... Probabilty
xm vector at time
o

« If p©is given and TPM is given

o = 05 p



Markov Chains

LETRIN ST 6 n
ETRIN SR B,
=" P P | B
Pml Pm2 Pmm
= pl( )P +p§ )P ....+p,(n0)Pm1 .... Probability of
going to state 1
= P1( )P +p§O)P21 +....+119,(%0)Pm2 .... Probability of

oing to state 2
And so on... JoIns




Markov Chains

Therefore

PM=[p’ )

p(2) _ p(l) % P
=p@xPxP
=p(0)xP2

In general,

o = p0) 5 pr



Markov Chains

As the process advances in time, pj(”) becomes less
dependent on p©

The probability of being in state ‘j’ after a large

number of time steps becomes independent of the
initial state of the process.

The process reaches a steady state at large n
p=pxP

As the process reaches steady state, the
probability vector remains constant



Example — 1

Consider the TPM for a 2-state first order homogeneous
Markov chain as

0.7 0.3
TPM =
[0.4 0.6]

State 1 is a non-rainy day and state 2 is a rainy day

Obtain the

1. probability of day 1 is non-rainfall day / day 0 is rainfall day
2. probability of day 2 is rainfall day / day 0 is non-rainfall day

3. probability of day 100 is rainfall day / day 0 is non-rainfall
day



Example — 1 (contd.)

1. probability of day 1 is non-rainfall day / day O is

rainfall day , ,
No rain rain

Norain[0.7 0.3
TPM = . [ ]
ranto4 0.6

The probability is 0.4

2. probability of day 2 is rainfall day / day O is non-
rainfall day

2 = p0)  p2



Example — 1 (contd.)

=[0.61 0.39]
The probability is 0.39

3. probability of day 100 is rainfall day / day O is non-
rainfall day

2 = p0)  pr



Example — 1 (contd.)

P’=PxP
0.7 037707 037 [0.61 0.39
o4 06|]04 06| 052 048
., ., [0.5749 0.4251]
P =P x P’ =
0.5668 0.4332
. . [0.5715 0.4285]
P8 = P*x Pt =
0.5714 0.4286

I [0.5714 0.4286]

0.5714 0.4286



Example — 1 (contd.)

Steady state probability
p=[0.5714 0.4286]

For steady state,
p=pxP"

- 1[0.5714  0.4286
=[0.5714 0.4286
) “10.5714  0.4286

0.5714  0.4286]



