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Summary of the previous lecture

* |DF relationship
— Procedure for creating IDF curves
— Empirical equations for IDF relationships



IDF Curves

Design precipitation Hyetographs from IDF relationships:

Rainfall intensity

Duration

Alternating block method :
« Developing a design hyetograph from an IDF curve.

« Specifies the precipitation depth occurring in n
successive time intervals of duration At over a total

duration T,.



IDF Curves

Procedure

Rainfall intensity (i) from the IDF curve for specified
return period and duration(t,) .

Precipitation depth (P) =i x t

The amount of precipitation to be added for each
additional unit of time At.

Pat = Pia2 — P | |
At




IDF Curves

* The increments are rearranged into a time
sequence with maximum intensity occurring at the
center of the duration and the remaining blocks
arranged in descending order alternatively to the
right and left of the central block to form the design
hyetograph.
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Example — 1

Obtain the design precipitation hyetograph for a 2-
hour storm in 10 minute increments in Bangalore with

a 10 year return period.

Solution:

The 10 year return period design rainfall intensity for

a given duration is calculated using IDF formula by
Rambabu et. al. (1979)

KT*
(t+b)n

[ =



Example — 1 (Contd.)

For Bangalore, the constants are

K =6.275
a=0.126
b=0.5

n=1.128

lt —

\ ).

For T = 10 Year and duration, t = 10 min = 0.167 hr,

0.126
j= 020743551t W

(0.167+0.5) "




Example — 1 (Contd.)

Similarly the values for other durations at interval
of 10 minutes are calculated.

The precipitation depth is obtained by multiplying
the intensity with duration.

Precipitation = 13.251 * 0.167 = 2.208 cm

The 10 minute precipitation depth is 2.208 cm
compared with 3.434 cm for 20 minute duration,
hence 2.208 cm will fall in 10 minutes, the
remaining 1.226 (= 3.434 — 2.208) cm will fall in
the remaining 10 minutes.

Similarly the other values are calculated and
tabulated



Example — 1 (Contd.)

Durqtion Intensity |Cumulative|lncremental Time (min) Precipitation
(min) (cm/hr) |depth (cm)|depth (cm) (cm)
10 13.251 2.208 2.208V 0-10 0.069
20 10.302 3.434 1.226+ 10 - 20 0.112
30 8.387 4.194 0.7600 20 - 30 0.191
40 7.049 4.699 0.505 30-40 0.353
50 6.063 5.052 0.353 40 - 50 0.760'
& 60 5.309 5.309 0.256 50 - 60 2208V
70 4.714 5.499 0.191 60 - 70 1.226/
80 4.233 5.644 0.145 70 -80 0.505
90 3.838 5.756 0.112 80 -90 0.256
100 3.506 5.844 0.087 90 -100 0.145
110 3.225 5.913 0.069 100 - 110 0.087
120 2.984 5.967 0.055 110 - 120 0.055




Example — 1 (Contd.
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MULTIPLE LINEAR
REGRESSION



Multiple Linear Regression

X

« Avariable (y) is dependent on many
other independent variables, x,, X,
X3, X, and so on.

* For example, the runoff from the
water shed depends on many
factors like rainfall, slope of
catchment, area of catchment,
moisture characteristics etc.

y
* Any model for predicting runoff should contain all
these variables



Simple Linear Regression

Best fit line

yA
(x;, y;) are observed values ¥,
Y; is predicted value of x. // | x
V. =a+bx

Estimate the parameters a, b such that
Error,e, = ). — ),  the square error is minimum

Sum of square errorsz € = 2 Y=Y, )2

M = E{ a+bx )}2



Simple Linear Regression

M = E{yl—a bx
2 bE

__() a= a=Yy-bx
da




Multiple Linear Regression

A general linear model of the form is

y is dependent variable,
X1y X9, Xgyeennn. X, are independent variables and
B1, Pos Pgs-ve--- , B, are unknown parameters

* ‘n’ observations are required on y with the
corresponding ‘n’ observations on each of the “p’
iIndependent variables.



Multiple Linear Regression

« ‘n’ equations are written for each observation as

V1= PByXq gt PoXqot i + BpX p
Yo = PyXoq F PoXoo Feeini + PpXap
yn = B1Xn,1 + Bzxn,Z o T Bpxn,p

« Solving ‘n’ equations for obtaining the ‘p’
parameters.

* ‘n’ must be equal to or greater than ‘p’, in
practice ‘n’ must be at least 3 to 4 times large as



Multiple Linear Regression

- Ify;is the i observation on y and x;; is the i"
observation on the jt" independent variable, the
generalized form of the equations can be written as

p
Vi = E ﬁjxi,j
=

* The equation can be written in matrix notation as

Y x B

(

nxl) (nxp) (pxl)



Multiple Linear Regression

W Y1 M2 Xz oo o Xy, o
Vs Xo1 Koo Koz o o Xy, b,
V3 [ Jo2
X X X
_yn i nx1 i n,l 71,1 n,p } nXp _/))p | pX1

Y is an nx1 vector of observations on the dependent
variable, X is an nxp matrix with n observations on
each p independent variables, B is a px1 vector of
unknown parameters.



Multiple Linear Regression

« Ifx;,=1for Vi, B, is the intercept

» Parameters 3, j = 1....p are estimated by
minimizing the sum of square errors (e

€ =) _)A/i



Multiple Linear Regression

In matrix notation,

zef -EE

- (r-xB) (v - xB)

4 =0 <

dB

0= -2X'(Y-Xf3)

XY=XXB



Multiple Linear Regression

 Premultiplying with (X'X)_1 on both the sides,

(xx) x7=(xx) xxB

(xx) XY=B
or
B=(xXx) XY

. (X’X) IS a pxp matrix and rank must be p for it to be
iInverted.



Multiple Linear Regression

« Suppose if no. of regression coefficients are 3, then
matrigiscas follows

n

] ) ) ]
)
E i E XioXig E Xi3Xig
=1
n

=1 =1
n n
X X)= X. X x> X. . X
i,177i,2 i,2 1,3771,2
=1 =1 =1
n n n

2
2 Xi1Xis 2 XiaXis E Xi3
= = =



Multiple Linear Regression

« A multiple coefficient of determination, R? (as in

case of simple linear regression) is defined as
0% eMors

R _ Sum of Squaresgue fo regression

Sum of squares about the mean
_BXY-ny’
YY -ny’




In a watershed, the mean annual flood (Q) is

Example — 2

considered to be dependent on area of watershed (A)

and rainfall(R). The table gives the observations for

12 years. Obtain regression coefficients and R? value.

Qi 1044 |0.24| 2.41 [2.97| 0.7 | 0.11 [0.05(0.51|0.25(0.23| 0.1|0.054
Ain

A | 324 |226|1474 [2142| 420 | 45 | 38 |363| 77 | 84 |46 | 38
Rainfall | 43 | 53 | 48 |50 | 43 | 61 | 81|68 | 74 | 71 | 71| 69




Example — 2 (Contd.)

The regression model is as follows
Q=0 + BA+ B3R

Where Q is the mean flood in m3/sec,
A Is the watershed area in hectares and
R is the average annual daily rainfall in mm

This is represented in matrix form as

I x B

12x1) (12x3)



Example — 2 (Contd.)

To obtain
coefficients
this
equation is
to be solved

- 0.44
0.24
2.41
2.97
0.7
O0.11
0.05
0.51
0.25
0.23
0.1

10.054

12x1

1
ek

e e T T e -

324
226
1474
2142
420
45
38
363
77
34
46
38

43
53
48
50
43
61
31
63
74
71
71
69

12x3

B,
£

£

3x1



Example — 2 (Contd.)

The coefficients are obtained from

B=(xXx) XY

=
n n
' 2
(X X) = E Xi1Xin E Xio
f =1
n




Example — 2 (Contd.)

12 5277 732
(){)()= 5277 7245075 269879
732 269879 46536

The inverse of this matrix is

335 —6.1x10™*  -0.05 ]
(xix) = -6.1x10"* 2.9x107 7.9x10°
-0.05 79%x10°  7.5x10°°




Example — 2 (Contd.)

r © 8.06
(XY)= le.,zyl. = 10642
417

g E
=
<



Example — 2 (Contd.)

A , -1 .
B=(XX) XY
3.35 _6.1x10%  —-0.05 ] T 8.06

~-6.1x10™"  2.9x1077 7.9x%107°|x[10642
-0.05 79%x10™°  7.5x107° 417

0.0351
0.0014
5.0135x10




Example — 2 (Contd.)

Therefore the regression equation is as follows
Q =0.0351 + 0.0014A + 5.0135*10~R

From this equation, the estimated Q and the
corresponding errors are tabulated.



Example — 2 (Contd.)

oY

Q A R O e
0.44 324 43 0.49 -0.05
0.24 226 93 0.35 -0.11
2.41 1474 48 2.10 0.31
2.97 2142 50 3.04 -0.07
0.7 420 43 0.63 0.07
0.11 45 61 0.10 0.01
0.05 38 81 0.09 -0.04
0.51 363 68 0.55 -0.04
0.25 7r7 74 0.15 0.10
0.23 84 71 0.16 0.07
0.1 46 71 0.10 0.00
0.054 38 69 0.09 -0.04

32



Example — 2 (Contd.)

Multiple coefficient of determination, R?:

p2 _BXY-ny’

YY -ny’
15.64-5.42

1577 -5.42
= 0.99

y=0.672, n=12
B'=[0.0351 0.0014 5.0135x10‘5]

*8.06
(X'Y) = 110642
417

YY =15.77



PRINCIPAL COMPONENT
ANALYSIS



Principal Component Analysis

Powerful tool for analyzing data.

PCA is a way of identifying patterns in the data and
data is expressed in such a way that the similarities
and differences are highlighted.

Once the patterns are found in the data, it can be
compressed (reduce the number of dimensions)
without losing information.

Eigenvectors and eigenvalues are discussed first to
understand the process of PCA.



Matrix Algebra

Eigenvectors and Eigenvalues:

« Let Abe acomplex square matrix. If A is a complex
number and X a non—-zero complex column vector
satisfying AX = AX, X is an eigenvector of A, while A
Is called an eigenvalue of A.

« X s the eigenvector corresponding to the
eigenvalue A.

« Eigenvectors are possible only for square matrices.
« Eigenvectors of a matrix are orthogonal.



Matrix Algebra

« If Ais an eigenvalue of an n x n matrix A, with
corresponding eigenvector X, then (A - A)X =0,
with X = 0, so det (A — Al) = 0 and there are at most
n distinct eigenvalues of A.

« Conversely if det (A—Al) =0, then (A—-Al)X =0 has
a non-trivial solution X and so A is an eigenvalue of
A with X a corresponding eigenvector.



Example — 3

Obtain the eigenvalues and eigenvectors for the
matrix,

|

The eigenvalues are obtained as

A-All=0

1-A 2
2 1-A



Example — 3 (Contd.)

(1-24)(1-24)-4=0
AT =2A-3=0

Solving the equation,
A=3,-1

Therefore the eigenvalues are 3 and -1 for matrix A.

The eigenvector is obtained by
(4-AI)X =0



Example — 3 (Contd.)

For A =3
(A-A1)X, =0

eigenvectors corresponding to A = 3 are the vectors

which has solution x =y, y arbitrary. y
with y = 0. [ }

y



Example — 3 (Contd.)

For A =-1
(A-A1)X, =0

5 o]

2x,+2y, =0
2x,+2y, =0

eigenvectors corresponding to A = -1 are the

which has solution x = -y, y arbitrary.
vectors , with y = 0. [



Principal Component Analysis

Principal Component Analysis (PCA):

« When data is collected on ‘p’ variables, these
variables are correlated

 Correlation indicates information contained in one
variable is also contained in some of the other p-1
variables.

« PCA transforms the ‘p’ original correlated variables
into ‘p’ uncorrelated components (also called as
orthogonal components)

« These components are linear functions of the
original variables.



Principal Component Analysis

The transformation is written as
/=XxA4
Where
X is nxp matrix of ‘n’ observations on p variables

Z is nxp matrix of ‘n’ values for each of p
components

A is pxp matrix of coefficients defining the linear
transformation

All X are assumed to be deviations from their
respective means, hence X is a matrix of deviations
from mean



Principal Component Analysis

Steps for PCA:

« (et the data for n observations on p variables.
« Form a matrix with deviations from mean.
« (Calculate the covariance matrix

« Calculate the eigenvalues and eigenvectors of the
covariance matrix.

« Choosing components and forming a feature vector.
* Deriving the new data set.



Principal Component Analysis

The procedure is explained with a simple data set of

the yearly rainfall and the yearly runoff of a catchment

for 15 years.

Year [ 1| 2 [3[4]5[6] 7] 8]9]10
S, 105 115 103 94 | 95 104 120 121 127 79
Runoft 42 | 46 | 26 39| 29 |33 48 | 58 | 45 20
(cm)

Year | 11 | 12 [ 13 [ 14] 15

Rainfall 1331 111 | 127|108 85

(cm)

Runoft 54 | 37 | 39 |34 | 25

(cm)

45



Principal Component Analysis

Step 2: Form a matrix with deviations from mean

Original matrix Matrix with deviations from mean
(105 427 [ —1.3 3.4 ]
115 46 8.7 7.4
103 26 -3.3 -12.6
94 39 -12.3 04
95 29 -11.3 -93
104 33 -23 =56
120 48 13.7 9.4
121 38 147 194
127 45 20.7 6.4
79 20 -27.3 —18.6_




Principal Component Analysis

Step 3: Calculate the covariance matrix

n

Z(xi —)_c)(yl. _J_’)

cov(X,Y)=s5,, =~

n-1

cov(X,X) cov(X,Y) 216.67 141.35
cov(Y,X) cov(Y,Y)| |141.35 133.38



Principal Component Analysis

Step 4: Calculate the eigenvalues and eigenvectors of
the covariance matrix

cov(X,X) cov(X, Y)}

216.67 141.35
cov(Y,X) cov(Y,Y)

141.35 133.38



Principal Component Analysis

Step 5: Choosing components and forming a feature
vector



