STOCHASTIC HYDROLOGY

Lecture -33

Course Instructor: Prof. P. P. MUJUMDAR

Department of Civil Engg., IISc.

Summary of the previous lecture

Regression on Principal components

$$x_{ij} = \frac{\left(X_{ij} - \overline{x}_{j}\right)}{S_{j}} \qquad y_{i} = Y_{i} - \overline{y}$$

$$Z = X A$$

$$Y = Z B$$

MULTIVARIATE STOCHASTIC MODELS

- Stochastic models discussed for single site in relation with the auto correlations and auto covariance.
 - Thomas Fiering models
 - Stationary and non-stationary models
 - ARMA models
 - Box Jenkins models

{xt?

First order Markov process:

Random component
$$X_{t+1} = \mu_x + \rho_1 (X_t - \mu_x) + \varepsilon_{t+1}$$

Deterministic component

 ϵ ~ Mean 0 and variance $\sigma_{\!\scriptscriptstyle \epsilon}{}^2$

$$X_{t+1} = \mu_x + \rho_1 (X_t - \mu_x) + u_{t+1} \sigma_x \sqrt{1 - \rho_1^2}$$

First order Markov model with non-stationarity, for stream flow generation:

$$X_{i,j+1} = \mu_{j+1} + \rho_j \frac{\sigma_{j+1}}{\sigma_j} (X_{ij} - \mu_j) + t_{i,j+1} \sigma_{j+1} \sqrt{1 - \rho_j^2}$$

 ρ_j is serial correlation between flows of jth month and j+1th month.

$$t_{i, j+1} \sim N(0, 1)$$

ARIMA Models

ARMA (p, q)

ARMA (p, q)

Residuals of order 'q'

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + ... + \phi_{p}X_{t-p} + \theta_{1}e_{t-1} + \theta_{2}e_{t-2} + ... + \theta_{q}e_{t-q} + e_{t}$$

AR of order 'p'

{e₁} is the residual series

Assumptions: {e_t} has zero mean with uncorrelated terms

$$\hat{X}_{t+1} = \sum_{j=1}^{p} \phi_j X_{t-j} + \sum_{j=1}^{q} \theta_j e_{t-j}$$

- Data generation (or forecasting) on a random variate depending on two or more sites is usually required.
 - For example, in the design of a reservoir, the flow from all the streams fed to the reservoir must be considered.
- If the time series for the random variables are independent, then the generation techniques for single site can be used.
- When they are not independent, it is important to consider the simultaneous behavior of the random variables.

- Correlation of a random variable between two sites is cross-correlation.
- Lag zero cross-correlation is the correlation of a random variable at two points in the same time period.
- Lag k cross-correlation, $r_{j,h}$ (k) is the correlation between random variable at site j with the random variable at site h, with lag time k.

$$r_{j,h}(k) = \frac{\sum_{i=1}^{n} (x_{j,i} - \overline{x}_j)(x_{h,i+k} - \overline{x}_h)}{(n-k)s_j s_h}$$

where

n is the total number of pairs of observations on X_j and X_k ,

 $x_{j,i}$ is the ith observation on X_j

 \overline{x}_{j}, s_{j} are the mean and standard deviation of the observations on X_{j}

Example – 1

Obtain the lag one cross correlation of annual rainfall data in mm at two sites A and B.

Year	1	2	3	4	5	6	7	8	9	10
Annual rainfall at site A (mm)	5496	7797	7392	7061	6564	5919	5053	3951	4280	5910
Annual rainfall at site B (mm)	5713	6934	6275	6641	6675	5605	5144	5116	4722	6869

Year	11	12	13	14	15	16	17	18	19
Annual rainfall at site A (mm)	5145	6384	5679	6021	6733	8151	4151	4200	6704
Annual rainfall at site B (mm)	5226	7313	6068	5876	6044	8384	5149	5359	6197

Example – 1 (Contd.)

Site	Α	В		
Mean	5926	6069		
Std.dev.	1250.1	914.9		

lag one cross correlation of sites A and B is given by

$$r_{A,B}(1) = \frac{\sum_{i=1}^{n} (x_{A,i} - \overline{x}_{A})(x_{B,i+1} - \overline{x}_{B})}{(n-1)s_{A}s_{B}}$$

S.No.	Annual	Annual		,	$\left(\begin{array}{cc} \left(\begin{array}{cc} x & \overline{x} \end{array} \right) \end{array} \right)$
(i)	rainfall at A	rainfall at B	$\left(x_{A,i}-\overline{x}_A\right)$	$\left(x_{B,i+1}-\overline{x}_{B}\right)$	$\left(egin{array}{c} \left(x_{A,i}-\overline{x}_A ight) \ \left(x_{B,i+1}-\overline{x}_B ight) \end{array} ight)$
1	5496	5713	-430		(B,1+1B)
2	7797	6934	1871	≥ 865 —	→ -371836
3	7392	6275	1466	206	385557
4	7061	6641	1135	572	838719.5
5	6564	6675	638	→ 606 —	→ 687965.4
6	5919	5605	-7	-464	-296072
7	5053	5144	-873	-925	6328.587
8	3951	5116	-1975	-953	831772.6
9	4280	4722	-1646	-1347	2660008
10	5910	6869	-16	800	-1316760
11	5145	5226	-781	-843	13354.06
12	6384	7313	458	1244	-971409
13	5679	6068	-247	-0.95	-434.044
14	6021	5876	95	-193	47627.53
15	6733	6044	807	-25	-2373.94
16	8151	8384	2225	2315	1868613
17	4151	5149	-1775	-920	-2047028
18	4200	5359	-1726	-710	1260044
19	6704	6197		128	-220999
				Σ	3373079

Example – 1 (Contd.)

$$\sum_{i=1}^{n} \left(x_{A,i} - \overline{x}_A \right) \left(x_{B,i+1} - \overline{x}_B \right) = 3373079$$

$$r_{A,B}(1) = \frac{\sum_{i=1}^{n} (x_{A,i} - \overline{x}_{A})(x_{B,i+1} - \overline{x}_{B})}{(n-1)s_{A}s_{B}}$$

$$= \frac{3373079}{(19-1)\times 1250.1\times 914.9}$$

$$= 0.164$$

Multisite Markov model (Two sites):

- Model preserves mean, variance, skewness, lag one serial correlation and lag zero cross-correlation (Haan 1977).
- One site is to be selected as key site.
- Selection may be based on the length of the data and the quality of the record.
- Consider j as the key site and h as the subordinate site to key site j.
- A sequence of observations is generated for site jusing single site generation technique.

Ref.: Haan, C.T. (1977) Statistical methods in Hydrology, Iowa State University Press

 A cross-correlation model is used to generate values of site h based on generated values at site j.

$$\begin{split} X_{h,t} = \overline{x}_h + r_{j,h} \left(0\right) \frac{s_h}{s_j} \left(X_{j,t} - \overline{x}_j\right) + u_t s_h \sqrt{1 - r_{j,h}^2\left(0\right)} \\ \text{j and h refer to two sites, in this model} \end{split}$$

First order Markov model with non-stationarity (single site)

$$X_{i,j+1} = \mu_{j+1} + \rho_j \frac{\sigma_{j+1}}{\sigma_j} (X_{ij} - \mu_j) + t_{i,j+1} \sigma_{j+1} \sqrt{1 - \rho_j^2}$$

i is year *j* is month in this model

where

 u_t is a standardized random variate adjusted to incorporate the serial correlation at site h.

$$u_{t} = \xi \frac{\left(X_{h,t-1} - \overline{x}_{h}\right)}{S_{h}} + t_{t} \sqrt{1 - \xi^{2}}$$

 t_t is a standardized random variate

$$\zeta = \frac{r_h(1) - r_j(1) r_{j,h}^2(0)}{\sqrt{1 - r_{j,h}^2(0)}}$$

Multisite Markov model:

- Multisite generation requires simultaneous generation of data at several sites while preserving the correlation between the data at various sites.
- Consider $x_{i,t}$

$$x_{j,t} = \frac{\left(x_{j,t} - \overline{x}_j\right)}{s_j}$$

$$X_{t+1} = \mu_x + \rho_1 (X_t - \mu_x) + u_{t+1} \sigma_x \sqrt{1 - \rho_1^2}$$

The first order Markov model for site h is

$$x_{h,t+1} = \rho_h(1)x_{h,t} + \varepsilon_{h,t+1}\sqrt{1 - \rho_h^2(1)}$$

 μ = 0 and σ =1 because it is standardized data

The first order Markov model for site j is

$$x_{j,t+1} = \rho_j(1)x_{j,t} + \varepsilon_{j,t+1}\sqrt{1 - \rho_j^2(1)}$$

The equations are written in matrix form

$$X_{t+1} = EX_t + G\mathcal{E}$$

where

 X_t is a p x 1 vector of standardized values of the variable generated at time t,

E is a p x p diagonal matrix whose jth diagonal element is $\rho_i(1)$,

G is a p x p diagonal matrix whose jth diagonal element is $\sqrt{1-\rho_j^2(1)}$

 \mathcal{E} is a p x 1 vector of random variates

- \mathcal{E} is defined to preserve the first order serial correlation (auto correlation) of the x_j 's and the lag zero cross-correlation between x_j and x_h .
- \mathcal{E} is made of elements that are $\varepsilon_{j,t+1}$; each $\varepsilon_{j,t+1}$ is independent of $x_{j,t}$; ε_{j} is N(0,1)
- The cross correlation between ε_{j} and ε_{h} is $\rho^{*}_{j,h}(0)$,

$$\rho_{j,h}^{*}(0) = \frac{\left\{1 - \rho_{j}(1)\rho_{h}(1)\right\}\rho_{j,h}(0)}{\sqrt{\left\{1 - \rho_{j}^{2}(1)\right\}\left\{1 - \rho_{h}^{2}(1)\right\}}}$$

• $\rho^*_{j,h}(0)$ reproduces the desired $\rho_{j,h}(0)$, which is the lag zero cross correlation between x_j and x_h .

$$\mathcal{E} = AD_{\lambda}^{1/2} e$$

where

 $D_{\lambda}^{\frac{1}{2}}$ is a p x p diagonal matrix whose j^{th} diagonal element is the square root of the j^{th} largest eigenvalue of the p x p correlation matrix whose elements are $\rho_{i,h}^{*}(0)$

A is a p x p matrix consisting of eigenvectors of correlation matrix,

e is p x 1 vector of independent observations from N (0,1)

 Matalas (1967) has given a multisite normal generation model that preserves the means, variances, lag one serial correlation, lag one crosscorrelations and lag zero cross-correlations.

$$X_{t+1} = AX_t + B\mathcal{E}_{t+1}$$

where

 X_t and X_{t+1} are p x 1 vectors representing standardized data corresponding to p sites at time steps t and t+1 resp.

Ref.: Matalas, N.C. (1967) Mathematical assessment of synthetic hydrology, Water Resources Research 3(4):937-945

 \mathcal{E}_{t+1} is a form of N(0,1) with \mathcal{E}_{t+1} independent of X_t . A and B are coefficient matrices of size p x p.

$$X_{t+1} = \begin{bmatrix} x(1,t+1) \\ x(2,t+1) \\ \vdots \\ x(i,t+1) \\ \vdots \\ x(p,t+1) \end{bmatrix} \qquad X_{t} = \begin{bmatrix} x(1,t) \\ x(2,t) \\ \vdots \\ x(i,t) \\ \vdots \\ x(p,t) \end{bmatrix} \qquad \mathcal{E}_{t+1} = \begin{bmatrix} \varepsilon(1,t+1) \\ \varepsilon(2,t+1) \\ \vdots \\ \varepsilon(i,t+1) \\ \vdots \\ \varepsilon(p,t+1) \end{bmatrix}$$

The equation form is

$$x_{i,t+1} = \sum_{j=1}^{p} a_{i,j} x(i,t) + \sum_{j=1}^{i} b_{i,j} \varepsilon(i,t+1)$$

where

 $a_{i,j}$ and $b_{i,j}$ denote the (i,j)th elements of the matrices A and B.

B is assumed to be lower triangular matrix.

Coefficient matrices A and B:

• The expectation of $X_t X_t$ is denoted by M_0

$$M_0 = E\left[X_t X_t'\right]$$

If $m_0(i, j)$ is a element of M_0 matrix in the i^{th} row and j^{th} column,

$$m_{0}(i,j) = \frac{1}{n} \left[x(i,1)x(j,1) + x(i,2)x(j,2) + \dots x(i,n)x(j,n) \right]$$

$$m_{0}(i,j) = \frac{1}{n} \sum_{t=1}^{n} x(i,t)x(j,t)$$

$$m_0(i,j) = \frac{1}{n} \sum_{t=1}^n \left(\frac{X_{i,t} - \overline{x}_i}{S_i} \right) \left(\frac{X_{j,t} - \overline{x}_j}{S_j} \right)$$

i.e., $m_0(i, j)$ is correlation coefficient between the data at sites i and j at time t.

Therefore M_{θ} is the cross-covariance matrix of lag zero

• The expectation of $X_t X_{t-1}$ is denoted by M_1

$$M_{1} = E\left[X_{t}X_{t-1}^{'}\right]$$

If $m_I(i, j)$ is a element of M_I matrix in the i^{th} row and j^{th} column,

$$m_{1}(i,j) = \frac{1}{n} \left[x(i,1)x(j,0) + x(i,2)x(j,1) + \dots x(i,n)x(j,n-1) \right]$$

$$m_{1}(i,j) = \frac{1}{n-1} \sum_{t=2}^{n} x(i,t)x(j,t-1)$$

$$m_1(i,j) = \frac{1}{n-1} \sum_{t=2}^{n} \left(\frac{X_{i,t} - \overline{x}_i}{S_i} \right) \left(\frac{X_{j,t-1} - \overline{x}_j}{S_j} \right)$$

i.e., $m_1(i, j)$ represents lag one cross correlation between the data at sites i and j.

Therefore M_I is the cross-covariance matrix of lag one

Considering the model,

$$X_{t+1} = AX_t + B\mathcal{E}_{t+1}$$

Post multiplying with X_t on both sides and taking the expectation,.

$$E\left[X_{t+1}X_{t}^{'}\right] = AE\left[X_{t}X_{t}^{'}\right] + BE\left[\mathcal{E}_{t+1}X_{t}^{'}\right]$$

$$M_{1} = AM_{0} + 0$$

$$A = M_{1}M_{0}^{-1}$$

Post multiplying with X_{t+1} on both sides and taking the expectation,.

$$X_{t+1} = AX_t + B\mathcal{E}_{t+1}$$

$$E\left[X_{t+1}X_{t+1}^{'}\right] = AE\left[X_{t}X_{t+1}^{'}\right] + BE\left[\mathcal{E}_{t+1}X_{t+1}^{'}\right]$$

$$M_{0}$$

$$M_{1} = E \left[X_{t} X_{t-1}^{'} \right]$$

$$M_{1}^{'} = \left\{ E \left[X_{t} X_{t-1}^{'} \right] \right\}^{'}$$

$$= E \left[\left\{ X_{t} X_{t-1}^{'} \right\}^{'} \right]$$

$$= E \left[X_{t-1} X_{t}^{'} \right]$$
or
$$M_{1}^{'} = E \left[X_{t} X_{t+1}^{'} \right]$$

$$\mathcal{E}_{t+1} X_{t+1}^{'} = \mathcal{E}_{t+1} \left\{ A X_{t} + B \mathcal{E}_{t+1} \right\}^{'}$$
$$= \mathcal{E}_{t+1} X_{t}^{'} A^{'} + \mathcal{E}_{t+1} \mathcal{E}_{t+1}^{'} B^{'}$$

Taking expectation on both sides,

$$E\left[\mathcal{E}_{t+1}X_{t+1}^{'}\right] = E\left[\mathcal{E}_{t+1}X_{t}^{'}A^{'} + \mathcal{E}_{t+1}\mathcal{E}_{t+1}^{'}B^{'}\right]$$

$$= E\left[\mathcal{E}_{t+1}X_{t}^{'}A^{'}\right] + E\left[\mathcal{E}_{t+1}\mathcal{E}_{t+1}^{'}B^{'}\right]$$

$$= 0 + IB^{'}$$

$$= B^{'}$$

Substituting in the equation,

$$\begin{split} E\left[X_{t+1}X_{t+1}^{'}\right] &= AE\left[X_{t}X_{t+1}^{'}\right] + BE\left[\mathcal{E}_{t+1}X_{t+1}^{'}\right] \\ M_{0} &= AM_{1}^{'} + BB^{'} \\ M_{0} &= M_{1}M_{0}^{-1}M_{1}^{'} + BB^{'} \\ BB^{'} &= M_{0} - M_{1}M_{0}^{-1}M_{1}^{'} \end{split}$$

$$If \ C = BB^{'} \\ C &= M_{0} - M_{1}M_{0}^{-1}M_{1}^{'} \end{split}$$

- B does not have a unique solution.
- One method is to assume B is a lower triangular matrix.

$$C = \begin{bmatrix} c(1,1) & c(1,2) & c(1,3) & \dots & c(1,p) \\ b(2,1) & b(2,2) & b(2,3) & \dots & b(2,p) \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \vdots \\ b(p,1) & b(p,2) & \dots & \dots & b(p,p) \end{bmatrix}$$

The diagonal elements of the B matrix are obtained as,

$$b(1,1) = c(1,1)^{\frac{1}{2}}$$
$$b(2,2) = \left\{c(2,2) - b^2(2,1)\right\}^{\frac{1}{2}}$$

•

 $b(k,k) = \left\{c(k,k) - b^2(k,k-1) - b^2(k,k-2) - \dots - b^2(k,1)\right\}^{\frac{1}{2}}$

• The elements in the k^{th} row are obtained as,

$$b(k,1) = \frac{c(k,1)}{b(1,1)}$$
$$b(k,2) = \frac{c(k,2) - b(2,1)b(k,1)}{b(2,2)}$$

•

.

$$b(k,j) = \frac{c(k,j) - b(j,1)b(k,1) - b(j,2)b(k,2)....b(j,j-1)b(k,j-1)}{b(j,j)}$$

- If the model is to fit the data, the matrices M_0 and BB' should be positive definite.
- This condition is used to check the inconsistency in the data.
- Assumption is that the model is multivariate normal.