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Summary of the previous lecture

« Data consistency checks
— Specific Flow: Case study

« Data representation through box plots
 Normalisation of flow data



Recent Applications of Stochastic Hydrology

Hydrologic Impacts of Climate Change:
Quantification of Uncertainty

Acknowledgment : Slides in this lecture are taken
with permission from PhD Thesis Presentation of
Subimal Ghosh, IISc. Bangalore



Assessment of Climate Change Impacts
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Uncertainty Modeling : Probabilistic Approach
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Downscaling

Downscaling: to model the hydrologic variables
(e.g., precipitation) at a smaller scale based on
large scale GCM outputs.

Statistical Downscaling: produces future
scenarios based on statistical relationship
between large scale climate features and
hydrologic variables like precipitation.
Assumption- Statistical relationship hold good
in future for changed climate scenario.

Advantage- computationally simple and easily
adjusted to new areas.

GCM grid

Grid for hydrologic processes




Case-study Area: Orissa Meteorological

Subdivision
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* Increase of hydrologic
extremes in recent past

* Increase in temperature:
1.1°C/century, whereas in
average increase in India:
0.4%C/century.

> Rainfall Data Used:
Monthly data from
1950-2003

Ref : Subimal Ghosh and P.P. Mujumdar (2006) “Future Rainfall Scenario over
Orissa with GCM Projections by Statistical Downscaling” Current Science, 90(3),
Feb 10, 2006, pp. 396-404. (Pub : Indian Academy of Sciences, Bangalore)



» GCM Used: AGCM (CCSR/NIES, Japan)

» Scenario Used: B2 (IPCC TAR Scenario)
» Climate predictor : MSLP

» Length of GCM Output Used: 1950-2100



Principal Component Analysis

The percentage of total variance w, explained by the k™ principal component is

given by:
W, = 2 x100

M
2

m=1

Percentage of Variance Explained
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Principal Components

Number of Principal Components used=3



Regression with PCs

»Regression Equation:

K
RAIN, = C+ Zyk X pc,,
=1

RAIN, =172.227 +144.930% pc, —493.944x pc, —480.663x% pc,

Correlation Coefficient (R) = 0.789



Regression with Principal
Components

RAIN, =172.227 +144.930% pc, —493.944x pc, —480.663x% pc,

Normality of Residuals
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Histogram

160
140 1
120 1
100 1
80 1
60
40 -
Std. Dev = 577.22

Mean = 0.0
N = 648.00

20 4

Unstandardized Residual

11



Results of the Regression Model

* Long term mean and median (training of model)

Period Obs. Pred. Obs. Pred.
Mean Mean Median Median

Wet 281.4 mm/ |281.3 mm/ | 281.9 mm/ | 283.3 mm/

(JJAS) month month month month

Dry 49 mm/ |[74.3 mm/ |[73.8 mm/ |73.6 mm/
month month month month

@ Nash — Sutcliffe Coefficient (E): 0.83

E=1

S (p,-p,f

S (p,-Pf



Prediction with CCSR/NIES GCM and B2
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Drought Assessment: Drought Indices

Drought analysis 1s performed with drought indices

* A drought indicator, briefly defined, 1s a variable to identify and
assess drought conditions (Steinemann, 2003)

* Different drought indices:

— Standardized Precipitation Index (SPI) : Developed by
McKee et. al (1993). Input data required: precipitation

— Palmer Drought Severity Index (PDSI) : Developed by Palmer
f1965). Input data required: precipitation, temperature data and
ocal Available Water Content (AWC) of the soil

— Bhalme-Mooley Drought Index (BMDI): Monthly index. Input
data required : monthly precipitation

— Effective Drought Index (EDI): Calculated in daily time step.
Input data required : precipitation

* Index used in the present analysis: SPI-12 (Annual SPI)



SPI-12: Equiprobability Transformation

Corresponding to the CDF of the rainfall the standard normal deviate
(mean 0 and variance 1) is termed as SPI.

I
= Fitted
Gamma
oSt Distribution N e 0ot Normal COF
*
+  Weibull's
nalk Plotting . oar
Position
o7 0.7
0Eef 0.8
L
- 3
0 0
™
0.4 0.4
() 0.3
+
0 0
cPl-12
0.1 0.1
Ld
+
" 1 gt 1 1
00 1000 1500 2000 —4 -2 0 2 4

Annual Rainfal Standard Mormal Deviate



Classification of Drought based on
SPI (McKee et al., 1993)

SPI Values Drought Category

0 to -0.99 MNear Normal

100 to -1.49  Mild to Moderate Drought

150 t0 -1.99  Severe Drought

-2.00 or less Extreme Drought
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SPI-12 Computation

[ GCM Output }

@ [ Statistical Downscaling }
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GCMs and Scenarios Used

GCM Organization Scenarios Available
CCSR/NIES Center for Climate Research Al., A2, B1, B2
Coupled GCM Studies (CCSR) and National

[nstitute for Environmental
Studies (NIES), Japan

Second Generation Canadian Center for Climate [592a, A2, B2
Coupled Global Modelling and Analysis,
Climate Model (CGCNM2) Canada
HadCM3 Hadley Centre for Climate [S95a, (GHG+
Prediction and Research Ozone+Sulphate), A2

(HCCPR), UK

ECHAM4/0PYC3 Max Planck Institute [592a.
fiir Meteorologie, Germany. A2 B2
CSIRO-MK2 Australia’s Commonwealth ([S92a+Sulph).
Scientific and Industrial [S92a, A1, A2,
Research Organisation (CSIRO ) B1, B2
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SPI-12
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Projections of SP1-12
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Probability Density Function of SPI-12

* All the scenarios are equally possible (IPCC report, 2001)
* QOutputs of all the GCM models are equally accurate.

* Time series generated by each GCM model for each of the scenario is
considered as a realization.

* All the generated time series together are considered as stochastic process.
* At each time step there is a marginal pdf of SPI-12.

PDF




Determination of pdf at each time step

* Assumption of Normal Distribution

* Kernel Density Estimation Method



Assumption of Normal Distribution

At each time step (year) the SPI values are assumed to follow
normal distribution

CDF values are estimated based on normal distribution, and
probability of predicted droughts are estimated.

P( Extreme Drought ) = F¢p((-2)
P( Severe Drought ) = Fp(-1.5) - Fepi(-2)
P( Mild Drought ) = Fgp(-1.0) - Fgp(-1.5)

P( Near Normal ) = F¢p(0) - Fgpi(-1.0)



Results: Probability of Drought
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Kernel Density Estimation

* Basic Equation

7= )"y K ((x-x,)/0)

]} ( X) - kernel density estimator of a pdf at x

n - number of observations
h - smoothing parameter known as bandwidth

Selection of bandwidth - an important step in kernel estimation method.

Conventional Method

(Silverman, 1986):

-

h = (1.587)on™3

O = min{S ]Q—R}

"1.349

\
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Kernel Density Estimation: Results
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Kernel Density Estimation: Drawbacks

* A large sample can give a better estimate of kernel density
estimator. In the present analysis, the sample size is small
with only the downscaled SPI of the available GCM output,
which may not lead to accurate results

* The bandwidth 1s estimated by assuming the actual density
as normal, which may not be the actual case. In such cases
the estimate may be inaccurate.



