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Lecture-1 
Definition of probability measure and conditional probability



This Lecture

• What is this course about?
• Begin reviewing theory of probability



Loads on engineering structures

• Earthquake
• Wind
• Waves
• Guideway unevenness
• Traffic 

•Dynamic 
•Random
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Uncertainties in structural engineering problems

• Loads (earthquakes, wind, waves, guide way 
unevenness…)

• Structural properties (elastic constants, mass, damping, 
strength, boundary conditions, joints…)

• Modeling (analytical, computational and experimental)
• Condition assessment in existing structures
• Human errors



Stochastic structural dynamics

•Branch of structural dynamics in which the uncertainties in loads are
quantified mathematically using theory of probability, random processes
and statistics.

•Random vibration analysis; probabilistic structural dynamics
•Failure of structures under uncertain dynamic loads
•Design of structures under uncertain dynamic loads

Also important in experimental vibration analysis
•Measurement of frequency response and impulse response functions
•Seismic qualification testing
•Condition assessment of existing structures

Pre-requisites
Basic background in 

•Linear vibration analysis
•Probability and statistics



Mathematical models for uncertainty:

•Probability, random variables, random processes, statistics.
•Fuzzy logic.
•Interval algebra.
•Convex models.
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Definitions of probability: 

1.Classical definition
2.Relative frequency
3.Axiomatic

Review of probability and random processes

Suggested books

1. A Papoulis and S U Pillai, 2006, Probability, random variables and stochastic processes,
4th Edition , McGraw Hill, Boston.

2. J R Benjamin and C A Cornell, 1970, Probability, statistics, and decision for civil engineers,
McGraw Hill Book Company, Boston.
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Classical (mathematical or a priori) definition:

If a random experiment can result in n outcomes, such that 
these outcomes are

•equally likely
•mutually exclusive
•collectively exhaustive

and, if out of these n outcomes, m are favourable to the 
occurrence of an event A, then the probability of the event A is 
given by P(A)=m/n.

Example: P(getting even number on die tossing)=3/6=1/2.

Objections
•What is “equally likely”?
•What if not equally likely? (what is the probability that sun 
would rise tomorrow?)
•No room for experimentation.
•Probability is required to be a rational number.
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Relative frequency (posteriori) definition

If a random experiment has been performed n number of times and if m outcomes 
are favorable to event A, then the probability of event A is given by 

  lim .
n

mP A
n



Objections

•What is meant by limit here?
•One cannot talk about probability without conducting an experiment. 

•What is the probability that someone meets with an accident tomorrow?
•Probability is required to be a rational number.
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Example: 

Toss a die 1000 times; note down how many times an even 
number turns up (say, 548). 

P(even number)=548/1000.

N=1000 here is deemed to be sufficiently large. 

There is no guarantee that as the
number of trials increases, the probability would converge.
The die need not be “fair”.
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Axiomatic definition

• Undefined notions 
(primitives)
– Experiments
– Trials 
– Outcomes

• An experiment is a physical 
phenomenon that can be 
observed repeatedly. A single 
performance of an experiment is 
a trial. The observation made on 
a trial is its outcome.

• Axioms are statements that are 
commensurate with our 
experience. No proofs exist.  All 
truths are relative to the 
accepted axioms.
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• Random experiment (E)
is an experiment such that 
– the outcome of a specific trial 

cannot be predicted, and
– it is possible to predict all 

possible outcomes of any trial.

Remarks

• E : the first technical term.
• Example: Toss a coin. We know that 

we will either get head or tail. In any 
given trial however we do not know 
before hand what would be the 
outcome.

• What cannot be envisaged, does not 
enter the theory.
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Axiomatic definition (continued)

 
 

Sample space ( )
Set of all possible outcomes of a random experiment.
Examples
(1) Coin tossing: = ;  Cardinality=2; finite sample space.

(2) Die tossing: = 1 2 3 4 5 6 ;  Cardinality=6; finite sample space.
(3)

h t







 
 

 Die tossing till head appears for the first time:
= h th tth ttth tttth ;  Cardinality= ;  countably infinite sample space.

(4) Maximum rainfall in a year: = 0 X< ;
Cardinality= ;  uncountably infinite sample 

 

  





space.
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space. outcome as of thought becan  
points. sample called are  of Elements

Ω
Ω

1 2

Consider a set with  elements. 

Number of subsets= (1 1) 2n n n n n n
o n

n

C C C C      
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Axiomatic definition (continued)

   

 

. of subsets of algebra sigma a is say that   wethen,

 (b)

,& (a)
If . of subsets of class a be Let 

 of subsets of algebra sigma  theis  :generalIn 

. ofy cardinalit;2 ofy Cardinalit
 ; :Ex

. of subsets all ofset   theis  :finite is 
)( spaceEvent 

1
1

ΩC

ΩAΩA

AA
ΩC

Definition
ΩB

ΩNB
thBthΩ

ΩBΩ
B

i
iii

C
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  Elements of B are
known as events
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Axiomatic definition (continued)
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1 ,

 )additivity of (axiom 3 Axiom
1 ion)normalizat of (axiom 2 Axiom
0 )negativity-non of (axiom 1 Axiom

such that 1,0:
(P)y Probabilit

i
i

i
ijiii APAPjiAAA

ΩP
BAAP

BP



PBΩ ,, : tripletordered  theis spacey Probabilit



Note:

We wish to assign probability to not only to elementary events 
(elements of sample space) but also to compound events 
(subsets of sample space). 

When sample space is not finite, ( as when it is the real line) 
there exists subsets of sample space which cannot be 
expressed as countable union and intersections of intervals. 

On such events we will not be able to assign probabilities consistent 
with the third axiom. 

To overcome this difficulty we exclude these events from the event space.
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2) (Axiom 1

3) (Axiom 
; 

1  Proof

. :Note
; with 1 proof Use :4 Proof
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(2) and (1) From
(2)3) (Axiom 

;
(1)3) (Axiom 

;








3 Proof

3. proof Use:hint :2 Proof
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Example: Fair Die tossing
= 1 2 3 4 5 6

The die has been tossed and an even number has been observed.
2 | Even ?

Approach 1: Even= 2 4 6

2 | Even 1/ 3 (Classical definition)
Approach 2: 

2 Even
2 | Even

Even

2 Even (2)

P

P

P
P

P










 

   1/ 62 | Even 1/ 3.
1/ 2

P  

 
 
     

Conditional Probability obeys all the axioms
(1) | 0

(2) | 1

(3) | | |  if 

P A B

P B

P A C B P A B P C B A C 



 

    

Conditional probability and stochastic independence
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Stochastic independence
Events  and  are said to be stochastically independent
if any one of the following four statements is true:
(1) The probability of occurrence of event  is not affected
by the occurrence of event .
(2)

A B

A
B

     
   
 

 

(3) |

(4) ( ); ( ) 0.
( )

P A B P A P B

P A B P A

P A B
P A P B

P B

 




 

 

(1) Defintion 1 is not useful to verify if  and  are independent.
(2) If we need to verify if  and  are independent, we need to
find , ( ), ( | ),& ( ) and use defintions 2,3, or 4.
(3) In

A B
A B

P A P B P B A P A B

Remarks

 
     
       

3
i=1

1 2 3 1 2 3

dependence of more than two events can also be defined. Thus

 are said to be independent if 

(1) , 1,2,3 & , and

(2)

i

i j i j

A

P A A P A P A i j i j

P A A A P A P A P A

    

  

     BPAPBAPBA 
tindependen areB and A:Notation  
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Example
Toss two coins. 

= hh ht th tt
Let , 0,  such that ( ) 1.

Let ( ) .

Clearly P( )= ( ) ( ) 1.
Define two events

head on the first coint=

head on the second

a b a b

P hh a P tt b P ht P th ab

P hh P tt P ht P th a b

E hh ht

E



  

   

      



  

   
 

 
     

1 2
2

1

2
2

2
1 2

1 2 1 2

1 2

 coint=
:  verify if &  are independent.

( )

( ) ( )

( )

&  are independent.

hh th
Question E E

P E P hh ht a ab a a b a

P E P hh th a ab a a b a

P E E P hh a

P E E P E P E
E E

     

     

  

  





: in which three events are pairwise 
independent but are not independent.
Consider a fair tetrahedron (this has four faces)
Let the four faces be painted as
Green, Yellow, Black and G+Y+B.

1( )
4

P Y  

Example

1 1 1; ( ) ( ) ;
4 2 2

1( ) ( ) ( )
4
1( ) ( ) ( )
4
1( ) ( ) ( )
4

1 1( ) ( ) ( ) ( ) .
4 8

P G P B

P GY P G P Y

P GB P G P B

P YB P Y P B

P GYB P G P Y P B

  

 

 

 

  



t.independen are C and B,A, if Examine
2) die and 1 dieon  numbers of (sumC

2) dieon (even B
1) dieon (even A

Define dies.  twoof
 tossinginvolving experiment random aConsider 





Example
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Let A  constitute a partition of .

That is, ; .

Let B be a set.

| ( )

N
i
N

i i j
i

N

i
i

N N

i i
ii

N

i i
i

A A A i j

B A B

P B P A B P A B

P B P B A P A















     

 

 
     

 







Total probability theorem
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| ( )
|

( ) ( )
| ( )

|
| ( )

( ) a priori probability
( | ) posteriori probability

i i i
i

i i
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Bayes' theorem


