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Scalar random variables-1



Recall

• Uncertainty modeling using theories of 
probability and random processes

• Definitions of probability
– Classical definition P(A)=m/n

– Relative frequency definition

– Axiomatic definition
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Axioms

 P e

•Sample point: element of sample 
space
•Events are subsets of sample space 
on which we assign probability
•Axiomatic definition does not 
prescribe how to assign probability

Axiomatic definition of probability

Recall (continued)
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Recall (continued)

•Conditional Probability

•Stochastic independence

•Total probability theorem
•Bayes theorem
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an element of  and hence an event on 
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,  (the dependence on  is not explicitly displayed)
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Probability Distribution Function ︵ PDF ︶ 
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x {Xx} P{Xx}
0  0
-100  0
600  1
5  0
10 {1} 1/6
20 {1,2} 2/6
22 {1,2} 2/6
35 {1,2,3} 3/6
53 {1,2,3,4,5} 5/6

   : Die tossing: 1 2 3 4 5 6 ;    10iX i  Example
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Probability density function (pdf)
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 (a) ; 0,1,2,  is also knwon as 
probability mass function (PMF).
(b) PDF is also known as cumulative probability 
distribution function (CDF).

kP X k p k   
Notes :



Heaveside’s step function
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Example 1: Box function
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Dirac’s delta function
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Dirac’s delta function
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Example-2: Stair case function
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Commonly encountered random variables

• Models for rare events
• Models for sums
• Models for products
• Models for extremes 

– Highest
– Lowest 

• Models for waiting times
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variable random Bernoulli

)(xpX

Remarks:
• p is the parameter of the Bernoulli random variable.
•Discrete random variable
•Finite sample space
•Basic building block
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Repeated Bernoulli trials: .
The random experiment here consists of  repeated Bernoulli trials.
Assumptions
(a) The random experiment consists of  independent trials.
(b) Each t

N

N

Binomial  random variable

rial results in only two outcomes (success/failure)
(c) P(success) remains constant during all trials.
Define =number of successes in  trials; 0,1,2,3, , .X N X N 

  (1 ) ; 0,1,2, ,N k N k
kP X k C p p k N    
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Consider a sequence of  trials resulting in  successes.
Occurrence of  successes implies the occurrence of ( - ) failures.

Probability of occurrence of one such sequence= (1 ) .

Number of such pos

k N k

N k
k N k
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sible sequences= .
These sequences are mutually exclusive.

(1 )

(1 )

(1 ) 1

(By virtue of binomial theorem. )
Hence the name binomial random variable
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A binomial random variable is denoted by ( , ).
 and  are the paramters of this random variable.

B N p
N p

Remarks

finite is space Sample
 variablerandom Discrete
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Random experiments: as in binomial random variable.
=number of trials for the first success; 1,2, , .
first success in N-th trial (success on the -th trial failures on the
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Geometric random variable
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eometric progression.
Hence the name geometric random variable.

systems gengineerin
 of  timeslife modelingin  Useful

space sample infiniteCountably 
 variablerandom Discrete







28

 xPX
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Geometric random variable with p=0.4
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  ( 1)
( 1)

Define  Number of trials to the -th success.
It can be shown that

(1 ) ; , 1, 2, ,

k
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(a) We are looking for occurrence of  an isolated phenomenon
in a time/space continuum. 
(b) We cannot put an upper bound on the number of  occurrences.
(c) A

Models for rare events : Poisson random variable

ctual number of  occurrences is relatively small.

: goals in football match (time continuum), defect in a yarn
(1- d space continuum), typos in a manuscript (2 - d continuum), 
defect in a solid (3 - d

Examples
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x
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 xpX

Poisson random variable with a=5

•Discrete RV
•Countably infinite

sample space
•Useful in wide 
variety of contexts


