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Discussion on properties of processes with
Independent increments
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Problem 35
Let ( ) be a process with stationary independent increments;
assume 0 & 0 0. Show that 
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Problem 34
Let ( ) be a stationary Gaussian random process with
zero mean and PSD function of the form

exp - ;-
22

•Determine the autocorrelation and cross correlation 
functions of 

X
XX

X t

S   


 
     

 

   the processes  and 
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PDF of time for first crossing of level 
For high levels of crossings we can approximate
the number of times the level is crossed as a Poisson
random variable.
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FACTORS OF SAFETY 
& 

PROBABILITY OF FAILURE
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Problem 35
In traditional engineering practice, uncertainties in 
specifying loads and structural resistance are accounted 
for by overestimating the loads and underestimating the 
strucutral resistance. The factors by which these estimates 
are obtained are calibrated against past experience with 
existing stock of strucutres. It is of interest to relate this broad 
principle with the probabilistic modeling of uncertainties. 
To illustrate this let us consider an idealized situation in which
demands on the structure and supply of structural capacity
are modeled as a pair of mutually independent Gaussian 
random variables.
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The failure event is defined by exceedance of load effect over the
available capacity. If the tolerable level of probability of failure
is specified to be ,  determine the factors by which the expectedFP
load and capacity are to be mutiplied.  

Extend the discussion to the case when several loads act 
on the structure (like, for example, dead load, live load,
thermal loads, etc.)
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Case of multiple loads

(Ref: A Haldar and S Mahadevan, 2000, Probability, 
reliability, and statistical methods in engineering design, 
John Wiley, NY)

•Structures need to be designed for more than 
one loads
•It is unlikely that all the loads would act 
simultaneously
•Load combination needs to be considered

•Dead load + live load
•Dead load + live load + wind
•Dead load + live load + earthquake
•Dead load + wind, etc.
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Use formulation already developed. 
This leads to a single load factor for S. 
Not very useful. 
We need different load factors γi for i=1,2,..,n.
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Knowing PF and variability measures 
we can find the load and Resistance factors.
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Generalization:
Methods of structural reliability analysis
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Problem 36
Figure (next slide) shows the pseudo-acceleration spectra 
for a rocky site according to the IS 1893 (Part 1) : 2002 
document. The PGA is taken to be 0.24g. It is of interest 
to develop a random process model for the ground 
acceleration that is compatible with this response spectrum.
It may be assumed that the ground acceleration can be 
modeled as a zero mean, stationary Gaussian random 
process. The duration of the acceleration can be taken 
to be 30s and the given response spectra may be
interpreted as locus of the 84% percentile point and 
damping may be taken to be 5%. 
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How to generate a response spectrum compatible with a given PSD?
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Problem 37
Figure (next slide) shows the psd function of ground 
acceleration which is modeled using Kanai-Tajimi's 

approach with 15rad/s, 0.6 . 

Determine the pseudo-acceleration spectra compatible
g g  

 
with this psd function. It may be assumed that the ground 
acceleration is  a zero mean, stationary Gaussian random 
process. The duration of the acceleration can be taken to be 
30s and the target response spectra may be interpreted as the 
locus of the 84% percentile point and damping may be
taken to be 5%. 
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Discussion on outcrossing theory of random 
Processes and applications to problems of
Load combination
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Let Q  be a quasi-static load on a structure 
(e.g., sustained live load). If we are interested in designing
the structure for this load, we can estimate
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   1 2

Recall that in order to characterize the average rate
of crossing of a critical barrier by a random process, 
we need the jpdf of the process and its derivative
at the same time instant.
Consider
Q t Q t Q   
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The evaluation of 
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is possible for Gaussian models for loads. A general solution
is difficult to obtain.
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Problem 39
Discussion of fatigue crack growth modeling under
random loads using fracture mechanics concepts
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Fracture mechanics based approaches

Basic assumption: 
there exists a crack in the structural component.

Question: 
Given the geometry of the crack, loads, boundary conditions, 
can we say if the crack is likely to grow?

Parameters for measuring the potency of the crack

•Stress intensity factor
•Energy release rate
•J-integral
•Crack tip opening displacement
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Stress near the cracktip in 
an infinite plate
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In the expressions for stress and displacement components 

the quantities  and  appear together. 

Can we give a name to the quantitiy ?

: ,  ,

a

a

EI mv

 

 

Stress Intensity Factor (SIF) and Critical SIF
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Definition
Crack propagates if  




SIF is a material property.

Stress Yield stress
SIF Critical SIF

Analogy
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max min, , , , , , , , ,

environmental variables 
      (temperature, humidity, salinity, etc.,)

 other material or mechanics variables 
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Model for Stage II crack growth
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Paris - Erdogan model

Example 
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Sources
 Macro-properties of specimens 

(geometry, dimensions, and 
material properties may differ
between specimens).
 External loading.
 Inhomgenous microstructure.






Modeling of uncertainties

Tests on identical specimens
 Behavior of crack length of identical specimens is random
 The crack length behavior is nonlinear in time
 The curves of different specimens intermingle.
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    0

 Treat constants appearing in the differential equation
for evolution of  as a fucntion of  as random variables.

; 0; 0

    
 Introduce random process models

        

m

a N
da C K K a a
dN

da C
dN



    



 

Two approaches

      0; 0; 0

            
2

mK X t K a a

tN 
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(Reference :        .,  1992,  
     ,   Pr )

Define ,  random process: length of the dominant 
crack at time .

 (samp

K Sobczyk and B F Spencer Jr
Random fatigue from data to theory Academic ess

A t
t







 

Cumulative jump models

 

0
1

0

le point). To be suppressed in further description.

( ) ;     

Initial crack length; sufficiently long to propagate; 
          could be random.

( )= a counting process; homogeneous

N t

i i i
i

A t A Y Y A

A

N t



   

 





Poisson process; 
            counts the number of crack increments in 0 to .t
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0
0

1

1

exp ; 0,1,2, ,
!

iid sequence of non-negative rvs with a 

  common pdf 

;   [PDF]

;
;   [pdf]

k

i i

Y

i i

A

A
A

t
P N t k t k

k
Y

p y

N t Y

P A t a P a t

dP a t
p a t

da
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0 1 1
1

1

1
1

0 1

0
0

0

Let  with 

Consider the moment generating function of .

exp exp

exp

exp exp
!

N t

i
i

N t

i
i

N t

i
k i

k
k

i
k

A t A A t A t Y

A t

sA s Y

s Y N t k P N t k

t
sY t

k
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1

0
1 0

0

0
0

0

1
0

0

exp exp exp
!

exp
!

Here  is the moment generating function of . 

That is, exp

Let us assume exp ; 0

; 0.

; exp
!

k
k

i
k

k
k

k

i

Y

k k

A

t
sA sY t

k

t
G s t

k

G s Y

G s sY

p y y y

G s s
s

t a
p a t t a

k k
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1

1

1
0

0
0

0
0 1 0

1

0 1 0

; exp ; 0
! 1 !

             exp 2 ; 0

where I Bessel's function of the first order.

; ,

k k

A
k

A A

t a
p a t t a a

k k

t
t a I at a

a

A t A A t p a t p a A t
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    0

0 0 1 0 0
0

Let  be the critical crack length 
(esimtated from the knowledge of ).

time required for ( ) to reach the critical length .

1 exp 2

Ic

T

K
T A t

P T t P A t

P t

t
t a A I a A

a A








   



    
 

    


Model for life time

 

    

0

0 0 0 0 0 0

It can be shown that

exp 2 ;0T

t da

p t t a A I a A t t
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0Model parameters:  associated with the process ;

: associated with .
Idea: derive these model parameters from laws such as 
the Paris law. An approximate method to a

Y

N t

p y





Estimation of system parameters

    0

chieve this 
would be to modify the Paris law to allow for randomness
in applied stress and system parameters.

; 0mp
p

da
C K a a

dN
  



7979

   max min 0

Let ( ) be the stress field that is modeled as 
a Gaussian, stationary random process.

1

; 0

Interpret  as the average rate

s
s

mp
s p p

s

S t

d d dt dN t
dN dt dN dt

da
C S S a a a

dt




 





   

     

What is meant by cycle?

of peaks in ( ).S t
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1
2

4

2

max min

2
max min

1
2
2

0 4

 average rate of zero crossing of .

1
2

Recall: . Interpret mean range.

2 1
2

1

s

s

s

s

mr rms

S t

S d

S d

K a S S

S S S S



  



  

  

 












 
 
   
 
  



      

   

 
  

  




Interpretation of ΔK



 

 

2

2
max min 0

;

; (0)

n
n s

mm mp
s p p

S d

da
C a S S a a

dt
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0

0

0

0 0

If we take ( )=number of peaks above a level ,  
then  becomes the average rate of peaks in ( ) 
above level . Select fatigue limit of material 
(that is the endurance limi

N t s
S t

s s









Interpretation of

   

1
2

4 4
0 0 2

2 4 2

0 2
2 0 2

4 2

t).

1 { 1
2

2 }

s

ss
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*

2

0

*

Select  such that 

F

is minimized. 

Here time required by  to reach .

t

p

p

A t A t dt

t A t








   





How to find ?


