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Random processes-2
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Parameter (time)

State

Ensemble

Recall

Multi-dimensional PDF, pdf
Mean, covariance,…
Stationarity: SSS, WSS
Eergodicty: Temporal and ensemble average
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Ergodicty of a random process

Basic notion
Equivalence of temporal and ensemble averages

Direction
Ensemble

Direction
 Temporal
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Ergodicity in mean
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Let X(t) be a stationary random process with specified joint pdf structure
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Ergodicity in mean

X(t) is said to be ergodic in mean iff
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Ergodicity in first order PDF
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X(t) is said to be ergodic in first order PDF if y(t) is ergodic in mean
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Ergodicity in autocorrelation
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X(t) is said to be ergodic in autocorrelation if ϕ(t) is ergodic in mean
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•Criteria for ergodicity in other properties 
could be developed on similar lines

•The above criteria are applicable if description of
the random process is available.

•The notion of ergodicity plays a crucial role
in relating observed data to mathematical models
of uncertainties
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Frequency domain representation of functions of time
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Periodic signals (well behaved) 

Aperiodic signals lim 0

Aperiodic signals lim

Aperiodic signals lim  neither goes 
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Time signals
Type I : 

Type II : 

Type III : 

Type IV : 

to zero nor becomes unbounded.

Let x(t) be a deterministic function of time
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A classification of time signals
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Realizations of 
stationary random 
process belong to 
Type IV signals.

No hope of any
frequency domain 
representation.

Type III signals

Remarks



Periodic signals )()( nTtyty 
Period: the smallest value of T for which the 
above condition is valid.
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Type I functions
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Y(t) is periodic with period=T

According to Fourier's theorem, under general conditions, 
a periodic function y(t) can be represented by 
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( ) is periodic with period 

2( ) cos sin ;
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The plots of  and  as a function of  are called,
respectively, as the Fourier cosine
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and sine spectra. 

The plot of   as a function of  is called
the Fourier amplitude spectrum. 

The plot of tan   as a function of  is called

the Fourier phase spectrum. 
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sine, cosine, amplitude and phase spectra
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If ( ) is a displacement function,  is a
quantity that is proportional to potential energy.
Similarly, if ( ) is a velocity function,  is a
quantity that is proportion

x t x t

x t x t

Energy and power of a signal
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Total energy is not an useful concept.

1Energy per cycle=  makes sense.
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er spectrum is an useful concept for Type I signals.

Total energy and power
Discrete power spectrum
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Clearly, lim .

Question: What happens to Fourier series based
description of  as ?
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Definition: Fourier Transform pair
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x(t) and X(ω) are said to form a Fourier transform pair



29

       

     

   

   

2

*

22

exp 2

exp 2

x t dt x t X f i ft df dt

X f x t i ft dt df

X f X f df

x t dt X f df





  

  

 

 





 

 

 
  

  
 

  
  



 

  

 



 

Parseval theorem
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No hope of any frequency 
domain representations
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Type IV
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Type V: x(t) is a stationary random process

Let ( ) be a zero mean stationary random process.
Samples of ( ) belong to Type IV time histories.

For each sample the power spectral 
density function can be defined.

: 
Power spectral densit
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X t
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Area under the PSD function is the variance of the process.
(4) contribution to the total average power (variance)

made by frequency components in the range ,

XX X XX

XX

R S d

S d

d

  


 

 





 









Remarks

 
 

       

   

     

.

0

(5) exp       Substitute -

exp

exp

XX

XX XX

XX

XX XX

S

S R i d s

R s i s ds

R s i s ds S





    



 













 

   

 

 









37

     

  

 

   

0

1(6) exp
2

1                 cos sin
2

1                 cos

(7) Physical PSD function (defined only for 0)
2   for 0

              =0 for

XX XX

XX

XX

XX XX

R S i d

S i d

S d

G S

   


   


  



  











 

 





 







Remarks

 
 0

Area under  would still be the variance of 
the process.

XXG
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Units of ( )
Units of PSD: 

frequency
Ex: ( ) is displacement
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Similarly, if X(t) is acceleration
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pairs function psd and covariance of examples few A
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Typical psd function of wind velocity
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Typical psd function of earthquake ground acceleration
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Consider a random process ( ) defined as
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Let V & V  be zero mean, stationary random processes 
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Evolutionary random process
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This notion can be generalized to define nonstationary
random processes with time dependent psd functions.
Such processes are called as evolutionary random proc
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