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Random processes-3
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Let ( ) be a random process and consider its 1st and 2nd order pdf-s.

1 1; exp ;
22

1, ; ,
2 1

1exp
2 1

X
X

XX

XX

X t

x m t
p x t x

tt

p x x t t
r

x m x

r



  



              


  


 



Gaussian random process
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Continuing further, consider  time instants  and 

associated random variables .

Let the jpdf of  be given by
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:  &  is positive definite.

 is said to be a Gaussian random process if the above form of 

pdf is true for any  and for any cho
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(a) A Gaussian random process is completely specified through its mean
 and covariance , .

(b) ( ) is stationary & ,

, ; , , ;

( ) is 2nd order
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Remarks

  SSS  is SSS.

(c) A stationary Gaussian random process with zero mean is
completely described by its autocovariance function or its
pdf function.

(d) Linear transformation of Gaussian random processes p

X t

reserve the
Gaussian nature. Gaussian distributed loads on linear systems produce
Gaussian distributed responses. 
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Let be a zero mean, stationary, Gaussian random process defined as
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Fourier representation of a Gaussian random process

Assumptions
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is a WSS random process.

 is Gaussian.

 is a SSS process.
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Consider the psd function 
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Fourier representation of a Gaussian random process (continued)
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By discretizing the psd function as shown we can simulate
samples of ( ) using the Fourier representation
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Ensemble of
realizations of random
processes can be 
digitally simulated
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Let  be an iid sequence of random variables

with
P
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Simple random walk
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Let  be the time axis and let us divide the
interval (0, ) into n subintervals each of 
width  such that 
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 is known as a simple random walk.
( ) is a discrete state, discrete parameter random process.

Consider the limit of 0 as 0
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Remarks
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In the limit of 0 as 0,  ( ) becomes
a deterministic function.
This is not an interesting limit from probabilistic 
point of view.
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Consider the following limit of the simple random walk
0 as 0

with
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This is an interesting limit!
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Wiener Process
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The resulting process is known as the Wiener process.
This is a process with continuous state and continuous parameter.
The process is a Gaussian process (central limit theorem).
The process i






Remarks

s nonstationary.
If 0, the process is known as a Brownian motion process. 
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Random events and Poisson process
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Let ( ) be the number of events occuring randomly in the interval 0, .
If there exists probability functions 
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then we say that ( ) is a counting proc
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ess (discrete state, continuous 
parameter random process).

        

Inter-arrival time
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( ) is said to be a Poisson process with stationary increments if the 
following conditions are satisfied

(a)  

That is, |
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Stationary arrival rule

Negligible probability for simultaneous arrivals
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Under these conditions it can be shown that
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Proof
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This equation can be used to recursively evaluate ,  by varying 
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Thus with =0, we have
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Clearly, 1, 1 0
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We have 0,0 0 0 1  counting begins after 0
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Repeating this process for 2,3,  we get

, exp ; 0,1,2, ,
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If the stationary arrival rule is relaxed, the above model can be
modified to read as
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Here we construct a random process by viewing it as a superposition of pulses
arriving randomly in time.

counting process

a random pulse that commences at time .
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Random pulses
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Consider the subclass

iid sequence of rvs; independent of ;indicate the intensity of the -th event.
a deterministic pulse arriving at  time ; 0 .
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By imposing the condition , we can write the above equation as
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1 2

Consider a random phenomenon E, which 
occurs as a Poisson process
with constant arrival rate . 
Let  be the times at which the event E occurs. 
Let  be the random variable representin
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intensity measure of E occuring at 
the time instant . 

Let , 1, 2,  be an iid sequence with common PDF .
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 PDF of a Gumbel RV. 
The above model has been used to 
model the maximum earthquake ground 
acceleration in the time interval 0 to t.
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 Let  be a random process. 
In formulating problems of mechanics
we need to differentiate random processes. 
For example, if ( ) is displacement,
we wo
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X t

Differentiation and integration of random processes
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When  is a random process, the sequence

-
 , =1,2,

is a sequence of random variables.
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What is meant by convergence of a sequence
of random variables?
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There are several valid modes of convergence of random variables.
Consequently, the associated calculus also would be built based
on a chosen mode of convergence of random variables.

A sequence
Definition
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 of random variables , , , ,  is said to
converge to the random variable  in the mean square sense if

lim 0.

This is denoted by l.i.m. .

The calculus based on this definition of converg
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ence of rvs is
called the mean square calculus.
This leads to the definition of mean square derivative and 
mean square integral.
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(a) When we say that a random variable  exists
in the mean square sense?

Answer: when .

(b) Thus for  to exist in the mean square sense, its
variance must be finite. This means,
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(c) If ( ) and ( ) are jointly stationary, show that
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 Show that for a zero mean, stationary
random process, the process  and its 

derivative  are uncorrelated.
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Area under psd (=variance) .
The process is physically unrealizable.
Analogous to a concentrated load in mechanics
and an impulse in dynamics.
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White noise
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Two random processes


