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Markov Vector Approach-5

Monte Carlo simulation approach-1
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PLUS : RELEVANT BCS & ICS
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Summary (Continued) :
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Illustration of deterministic averaging procedure
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Extension to randomly driven systems
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roximations till now.
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Two stage
     Deterministic Replace "regular" oscillatory terms 
        by their time averages
     Stochastic Replace randomly fluctuating oscillatory
        terms by delta correlated proc






Averaging




esses

First stage follows the procedure used in deterministic averaging.
The second stage is based on the application of the
Stratonovich-Khasminiski theorem.
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Consider the equation of motion

, , , ; 0; 0  specified.

=a small parameter
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Stratonovich - Khasminiski theorem
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above equation can be approximated by a SDE
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J B Roberts and P D Spanos, 1986, Stochastic
averaging: an approximate method of solving nonlinear
random vibration problems, Invited Review,
International Journal of Nonlinear Mechanics, 21(2

Reference : 

),111-134.
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     Forward equation : transient and steady state solution
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more interestingly

s
     One and two time moment equations
     Backward equation
     Reliability function
     GPV equations
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Remarks (continued)
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Special case
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The method can also be generalized to deal with
systems with nonlinear stiffness:
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Summary
Method of stochastic averaging enables us to study

envelope and phase processes associated with weakly
nonlinear system response to broad band excitations.
The method also provides a framework t



 o study
first passage problems for the response envelope.
The method is best suited to the study of sdof systems
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Monte Carlo Simulation Methods in
Stochastic Structural Dynamics
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Consider the problem of evaluation of the definite

integral ( ) .

This can be re-written as
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Following this, the integral  is 
now interpreted as an expectation
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Methods for generating samples of excitations
and system parameters compatible with the prescribed
probabilistic models
Test statistically if the generated samples indeed obey the 

pre





Ingredients of MCS

scribed probabilistic laws.
A computational model for the system dynamics which

accepts samples of inputs and system paramters produced 
above and generates an ensemble of response quantities.
Statistic



 al processing of ensmble of response time histories
and inferences on system behavior

We will begin with a review of elements of 
statistical methods
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(a) Data (used in plural) (birth, death, marraige).
(b) Science of statistics (used in singular).
(c) Statistic: a random variable; statistics: a set of random variables.
     (It is in this se

Statistics

nse that we use the word in the present course).
.



3030

: a single number that describes data. 

A material is described by its density, viscosity, stiffness, strength etc.

In the same sense there exist different measures to describe data-
e.g., arithme

Average

tic mean, geometric mean, mode, median, percentile, 
range, minimum, maximum, variance, standard deviation, skewness,
kurtosis, histogram, cumulative frequency distribution, correlation, etc.
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1 2 5000

1 2 5000

1 2 5000

Campus with 5000 persons.
Height
Weight
Income
specs?
gender M
In statistics each of this is a .
That is, population of heights, population of
weights, 

X X X
Y Y Y
I I I
Y N Y

F F

Population

population







etc.
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is a collection of all possible observations on a particular 
characteristic with respect to the problem on hand.
         -starting point in statistics
         -analogous to sample

Population (Universe)

Any collection of measurements capable of being described
by a random variable cons

 space in probabilit

titutes a popul

y.

ation.
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In practice it is not possible to study the entire population.
 is a part of the population which we want to study

and draw conclusions about property of population.
       -it is not enough 

Sample

Sample

to say that sample is a subset of population;
        the subset needs to be representative.   

: Procedure of drawing samples.
: development of sampling procedures to meet

        

Sampling
Sampling design

                     a requirement.
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Let  be a random variable with pdf .

Let  be a set of iid random variables with

common pdf .

The set of random variables  is called a random

sample of size  of .

Consider 

X

n
i i

X

n
i i

X p x

X

p x

X

n X





Random sample

 1 2,the real valued function , , .

This function is called a statistic. It is a random variable.
nS X X X
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1 2
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Let the pdf  be of the form ;  where
 = unknown parameter.

The joint pdf of  is of the form 

, , , ;

values of observed data taken from the random 
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1 1 2 2

1 2

For a particular set of observations
, , , ,  the value of the

estimator , , ,  is called as an estimate
ˆof  and is denoted by .

Estimator: a random variable
Estimate: the realization o

n n

n

X x X x X x
S x x x

 

  


f the estimator.
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Samples Mean
1 1
2 2
3 3
4 4
Mean 2.5
Std dev 1.29

Consider a population of four numbers  x=[1 2 3 4]t .
Population mean=2.5.

N=1
Samples Mean
1,2 1.5
1,3 2.0
1,4 2.5
2,3 2.5
2,4 3.0
3,4 3.5
Mean 2.5
Std dev 0.7071

N=2

Samples Mean
1,2,3 2.0
1,2,4 7/3
2,3,4 3.0
1,3,4 8/3
Mean 2.5
Std dev 0.4303

N=3

Sample  Mean
1,2,3,4 2.5
Mean 2.5
Std dev 0.0

N=4

37
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1

1Estimator: 

The PDF of  is known as the sampling distribution of .
A realization of  is known as an estimate.
The estimator is said to be unbiased if population mean.

The estimator is said

n

i
i

T X
n

T T
T

T









  to be consistent if lim Var 0.

Estimation : Finding a realization of  as an approximation
                    to a population parameter.

n
T

T
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Let  be a random variable with PDF ,  pdf ,
mean , and standard deviation .

Let be an iid sequence with common pdf .

That is, 1, ,
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Estimation of mean
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1  is an unbiased estimator of .

The above unbiased estimator is not unique.

Var

To get an unbiased estimator with minimum variance, 
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1 1
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Necessary conditions for optima

0 2 0; 1,2, , . .
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1The optimal Var .

Summary:
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n unbiased estimator of  with minimum

variance and the lowest variance is .
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  1

Let  be a random variable with pdf ; . 
Here  is a vector of parameters of the distribution.
For the moment assume that  is known.

Let  be an iid sequence of rand

X

n
i i

X p x

X








Maximum likelihood estimation

 
om variables 

with the common pdf given by ; . Xp x 
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Let us now consider the case when  is unknown and 

let us observe a sample .

We interpret ; | , , ,
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Maximum likelihood estimation (continued)
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It is a function of observed samples  and the 
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The maximum likelihood estimator of  is the value of 
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Example 1
Let exp 0.

| , , , exp

ln | , , , ln

ˆLet  maximize this function.
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Recall X  and the above estimat
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or is consistent 
with the unbiased estimator with minimum variance 
derived earlier.
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1
2

2

1Consider the estimator  

 is an unbiased estimator of  with variance .

Let us consider the case in which  is known.

If  is Gaussian, it w

n

i
i
X

n

n

X







 





Sampling distribution for the estimator of mean

  1
ould mean that  is an iid 

sequence of Gaussian random variables and consequently
 would also be Gaussian distributed.

If  is not Gaussian, by virtue of central limit theorem,
for large , we may s

n

i
X

X
n





 

till consider  to be Gaussian.

It may be infered that ~ ,  or, ~ 0,1 .
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