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Monte Carlo simulation approach-7
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Probability of failure

Variance reduction
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(a) Variance reduction can be viewed as a means to use 
known information about the problem.

(b) If nothing is known about the problem, variance reduction
is not achievable.

(c) At the o

Variance reduction

ther extreme, that is, when everything about the problem is 
known, variance reduces to zero but then simulation itself is not needed.

(d) How do we get information about the problem?
               - Perform a few cycles of brute force simulations and learn
                 something about the problem.
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Sub‐set simulations using Markov 
Chain Monte Carlo (MCMC)

• S K Au and J L Beck, 2001, Estimation of small failure 
probabilities in high dimension by subset simulation, Probabilistic 
Engineering Mechanics, 16, 263-277

• J S Liu, 2001, Monte Carlo strategies in scientific computing, 
Springer, NY.
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Small failure probability can be expressed as a product
 of larger conditional failure probabilities.
These larger conditional failure probabilities can be 

 estimated with lesser computation





Basic idea

al effort.
The method is applicable to a wide class of problems
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Subset simulation : motivation
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Let , ,  a metric of system performance.

We are interested in estimating P 0, .
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Remark
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Subset simulations
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If -s are configured such that |  and 
are much larger than ,  then we will be able to estimate

 in terms of product of "large" probabilities. 
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Remarks

           6 1 1 1 1 1 1

 then we could obtain an estimate of 

as 10 ~ 10 10 10 10 10 10 .

Estimation of probability of failure of the order of 0.1 can be 
easily done using MCS because the failure events here are m

FP
          

ore
frequent.
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Remarks (continued)
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th

1. Run a brute force Monte Carlo using, say, 200 samples.
   Evaluate the realization of the performance function at
   these 200 points. Rank order the these realizations and pick
   the 20  ranke

Steps
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d member and denote the performance function
   as . Define a new performance function .

   Define 0
ˆ   Clearly, Estimate of 0 0.1.

2. Store 20 members of  which lie
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1

in the failure region of .
3. Run 20 episodes of MCMC with each episode commencing from
   one of the 20 points in faiure region of . In each run continue
   with the simulaitons till 9 points are

g X

g X

 1

 obtained in failure region 
   of .g X
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4. This leads to 200 points in failure region of . Rank order the value

of ( ) at these 200 points and identify the 20  ranked member and denote
it by . Define a new performance
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   Define 0
ˆ   Clearly, Estimate of 0 | 0 0.1.

5. Repeat this exercise till  is reached.
6. Obtain the final probability of failure by using
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Remarks
The definition of -s (as in the present illustrative explanation)

ensures that -s are all equal to 0.1.

 Estimates for sampling variance can be deduced.
 Choice of proposal density functio

i
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 n: 
In standard normal space, typically shifted normal pdf.
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Example

Question
simulations.
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Number of samples: 200 at each subset

Proposal pdf | ~N ,i iq X x x I
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Run PF

1 2.5388 1.5394 0.8291 0.1154 0.0 6.95E‐05

2 2.4819 1.6062 0.8591 0.1662 0.0 5.75E‐05

3 2.4454 1.4920 0.6616 0.0 ‐ 1.00E‐04

4 2.2659 1.2125 0.4420 0.0 ‐ 2.65E‐04

*
1g *

2g *
3g *

4g *
5g
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Example

Question
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5

Number of samples: 200 per subset

Proposal pdf | ~N ,0.4

Brute force Monte Carlo with 10  samples
i iq X x x I
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Preliminaries

Let  be a deterministic function defined over .
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Series representation for random processes :
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0;   1, 2, ,

;   1, 2, ,

Question
Can similar formulation be developed for representing
random process ( )?

H K Van Trees, 2001, Detection, estimation, and modulation
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ory, Vol. I, John Wiley, NY pp. 178-198.
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Let be a zero mean, stationary, Gaussian random process defined as
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Recall
Fourier representation of a Gaussian random process
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If ( ) is mean square periodic we can use the Fourier
representation with uncorrelated coefficients.

cos sin ;  

Can we obtain series representations with uncorrelated
coeffcients w

n n n n n
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hen ( ) is not mean square periodic?
Or, more generally, when ( ) is not even stationary?
How can we proceed if ( ) is non-Gaussian?

X t
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-not necessarily stationary
-not necessarily mean square periodic
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This is an integral eigenvalue problem.
The kernel ,  is nonnegative definite.

eigenfunction; =eigenvalue
Exact solutions are available for a few cases.
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Remarks

cal solutions can be obtained by using
Galerkin's method
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Example : Bandlimited white noise process
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Let ( ) be a random process whose first order pdf and
the ACF functions are available. No further 

X t

Series represetation of  partially specified non - Gaussian
random processes using Nataf's transformation

 

informaiton about 
the process is available.

 need not be stationary.
How to represent ( ) in a series?
X t

X t
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Remarks

 *
1 2 1 2, ;0, , 2 dimensional Gaussian pdfz z t t     
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Monte Carlo simulation of response of systems
with spatially distributed random parameters
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th4  order, 2-point stochastic boundary value problem
Evolution of randomness in space and time
Markovian properties in space is not possible
Discretization of random fields is also essential
N







Remarks

atural frequencies, modeshapes, Green's functions
are all stochastic in nature.

( ),  ( ),  and ( ) cannot take negative values
  Gaussian models are not valid
       (especially when considering prob

EI x m x c x


lem of reliability
        evaluation)



42

Approach: employ KL expansions for 
( ),  ( ),  and ( ).

Note: These processes are non-Gaussian in nature.
          Assume that they are independent.
Discretization using KL-expansion and Nataf's trans
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,  ,  = random matrices (fully populated)
Starting point for applicaiton of methods such as the subset 

simulations
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Summary

• Simulations of random variables and random 
processes

• Fourier and KL expansions
• Introduction to statistical inference and estimation 
theory

• Introduction to calculus of Brownian motion and 
implications on numerical simulations

• Estimation of low probability of failure
• Variance reduction: adaptive procedures
• Discretization of spatially varying random quantities.


