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Duhamel's integral

Alternatives for earthquake load specification

Time histories

Power spectral density Response spectra

Monte Carlo 
simulations

Spectral
estimation

Spectrum
compatible
accelerograms 

Extreme value theory

Spectrum compatibe PSD
using extreme value theory

Not suited for
reliability analysis
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Modal combination rules : what is the basic problem?
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Modal combination rules
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Consider a mdof system subject to single component
of earthquake ground acceleration.
Consider a generic response qu

Application of principles random vibration analysis
in deriving modal combination rules
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These approximations compare well with exact solutions
(less than 1% error for frequency ratios between 0.8 to 1.0)
These expressions can be used for the case

when excitations are broad banded a





Remarks

nd the PSD function
varies slowly in the neighbourhood of system natural
frequencies.
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 Let , mean value of the maximum absolute
response of an oscillator over duration  in the steady
state.

=natural frequency of the oscillator
=damping ratio of the oscillator
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Response spectrum method
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SRSS rule can be deemed satisfactory for systems in 
which the natural frequencies are well separated and
modal damping is not very large. Excitation is broad banded
and strong phase long enough.


Remarks

CQC rule allows for correction due to modal interactions
and hence is suited for systems with closely spaced modes.
CQC rule can be implemented without having to evaluate

spectral moments.
Mean peak re





 sponse is not dependent explicitly on period 
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Excitation has been taken to be stationary, Gaussian 
white noise. [Duration of the strong motion phase of the
earthquake needs to be long and the excitation should be
broad band


Recall : assumptions made

ed].
The ratio of the response peak factor and the modal peak

factor is taken to be unity.
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Single component: stationary & nonstationary models
Multi-component and spatially varying load models
Gaussian and Poisson pulse process mod





Examples of stochastic models for earthquake ground motions

els

frequency content
transient nature and duration
time dependent frequency content
multi-component nature
spatial variability
translations and rotations
models for displacement and velo









Main concerns

city components
seismological considerations
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Kanai Tajimi & Clough and Penzien
Power spectral density function models
for free field earthquake ground acceleration
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Strategy: Use a deterministic modulaitng function.
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How to allow for nonstationary nature of ground accelerations?

Nonstationarity : in amplitude modulation & frequency content.
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Nonstationarity in frequency content

• Random pulse processes
• Evolutionary psd functions
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For a vector of Gaussian random variables it can be shown
that all cumulants of order 3 are zero.
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Evolutionary random process (Intutive explanation)

Consider  to be  zero mean, stationary 
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During earthquakes slips occur along fault lines in an 
intermittent manner. This sends out a train of stress waves 
in the earth cr

Filtered Poisson Process models for earthquake ground motions
Rationale
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1

Model -1
As in Kanai Tajimi model, the soil layer is modeled 
as an elastic half-space which can be represented as 
a sdof system.
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Selection of the shape of the pulse
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