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Single component: stationary & nonstationary models
Multi-component and spatially varying load models
Gaussian and Poisson pulse process mod





Examples of stochastic models for earthquake ground motions

els

frequency content
transient nature and duration
time dependent frequency content
multi-component nature
spatial variability
translations and rotations
models for displacement and velo









Main concerns

city components
seismological considerations
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Spectral representation of an evolutionary random process
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During earthquakes slips occur along fault lines in an 
intermittent manner. This sends out a train of stress waves 
in the earth cr

Filtered Poisson Process models for earthquake ground motions
Rationale
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Reference
Y K Lin and G C Cai, 1995, McGraw Hill, NY.
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2 2

2

1

Model -1
As in Kanai Tajimi model, the soil layer is modeled 
as an elastic half-space which can be represented as 
a sdof system.
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Selection of the shape of the pulse
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Seismic wave amplification through soil layers
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Model -2
Soil layer modeled as a shear beam with 
hysteretic damping
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Selection of the shape of the pulse
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Model -4
Soil layer modeled as a inhomogeneous hysteretically 
damped shear beam

ln
0

exp cos sin

1 sgn

d A yw w w
t y dy y

mH my l l

i m

 

  


     

  
  

  

     

    

Selection of the shape of the pulse
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General model

Green's function which describes the 
ground acceleration in the th direction 
at a site location and time 
due to an impulsive application of a doubl

N(T)
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Use elaborate models (3d-layered soil half-space)
to estimate the Green's function.
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Models for multi-component earthquake ground motions
Earthquake ground acceleration at any point can be

resolved into three components along three orthogonal
directions.
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We introduce a trasnformation
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Find the direction of coordinate axes in which the
0  matrix becomes diagonal.

This can be done by solving the eigenvalue problem
associated with the matrix 0 .
The maj

SS

SS

R

R







Principal axes of excitations

or principal direction lies on the horizontal
plane in a direction that points towards epicentre from the
recording station. The minor direction is in the vertical
plane.
This is an empirically observed  feature from recorded

data and there exists no "proof" for this.
Most often structures are designed taking into account

only the horizontal components.
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The principal directions for excitations need not coincide
with the global coordinate axes used in modeling the structure.

For a structure that is symmetric in plan, excitation in one
of the horizontal




 directions does not induce stresses in the

other orthogonal direction.

Most structures are irregular in plan and the bending and torsional
action could be coupled in the predominant modes of the struct


ural
oscillations. The modes could also be closely spaced.
 
Under the action of earthquake ground motions the structures 

undergo significant torsional oscillations. This is one of the most 
characterist



ic features of earthquake response of structures.
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 1X t

 3X t

 2X t

The structure translates and twists.
Principal axes for excitations exist and the ground motion 
components are uncorrelated along these axes.
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Ref :       ,  1985,  ,  
13,  1-12.

vector of nodal displacements relative t

W Smeby and A Der Kiureghian EESD
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Stationary random vibration analysis and basis 
for developing modal combination rule
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Diagonal

0

Spectral moments: 

Leads to peak factors associated with mean and standard
deviation of the maximum response over  duration .
One can 
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determine the orientation  for which the response
variance reaches its maximum value.
Alternatively,  can be treated as a random variable and 

the expected values of response quantities of interest co




uld be 

obtained with respect to pdf of .
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Forms the basis for development of modal combination rule 
when the inputs are specfied in terms of a set of response 
spectra along the principal axes.
When principal axes of excitation and structure 



 axes coincide, or
when excitation intensities along three axes are the same, a 
combination rule with
    SRSS for combination over excitation components, and
    CQC rule for combining over modal contr


 ibutions 

can be obtained.
More general forms which takes into account the value of 

have also been developed.
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Earthquake ground motion=convolution of 
the source mechanism with the Green's funciton
representing the wave pro

Earthquake source mechanism, wave propagation,
site amplfication, and ground motion models

pagation.

Application of double couples is equivalent to displacement 
discontinuities due to faulting.
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PSD models based on seismological considerations
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Factors
:  radiation pattern of the seismic wave
: free surface effect
: partition of energy into horizontal components
: mass density
: seismic wave velocity
: hypocentr
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Kanai - Tajimi Model

Clough and Penzien model



High pass filter
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Remark

 ground acceleration PSD to physical
properties of the source and the medium through which the
seismic waves travel.
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•Long span bridges, large dams, pipelines, tunnels,
Reference :  A Zerva, 2009, Spatial variations of seismic 
gr

Spatial variability of earthquake ground motions
and response of multi - supported structures



ound motions, CRC Press, Boca Raton

1

2

3
Circle Radius km SMA-s

0 0 1
1 0.2 4
2 1.0 12
3 2.0 12

Two more stations at 2.8 and 4.8 km 
south of the centre.
Tri-axial accelerometers at every station

SMART array at Taiwan
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Wave passage effect
Extended source effect
Scattering effect
Attenuation effect






Why spatial variability occurs?
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1 2

Wave front

Wave passage effect
Inclined incidence of plane waves
leading to time delays
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1 2

A B
Extended source effect: as rupture propagates
along an extended fault, it transmits energy that
arrives delayed on the ground surface.
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 Seismic source

Scatterer Scattering effect: 
Waves encounter scatterers
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Fault

Attenuation effect: 
Waves attenuate as they propagate
(not very important for engineering
structures)

Distance 1

Distance 2
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What are the phenomenological features associated with
response of structures subjected to spatially varying
ground motions?
When it is important to consider them?
How to model spatially varyi






Questions

ng ground motions as 
random processes?
        Based on data
        Based on phenomenological considerations
How to develop modal combination rules when the

inputs are specifed in terms of response sp





ectra?


