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Water Resources Systems:

Modeling Techniques and Analysis




Summary of the previous lecture

« Definition of a system

* Types of systems
e Simple and complex systems
e Linear and nonlinear systems
 Time variant and time invariant systems
« Continuous, discrete and quantized systems
 Lumped parameter and distributed parameter systems
* Deterministic and probabilistic systems
o Stable and unstable systems
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Optimization and simulation

« Mathematical expression for optimization problem
Maximize f(X)
subject to (s.t.)
g;(X) <0 j=1,2, ... m

Where X is vector of decision variables
X = [Xqg, Xg, Xgy vevee. Xq]

n decision variables, m constraints

e Decision variables are the variables for which
decisions are required.

« Complexity of the problem varies depending on nature of function,
constraints and the no. of variables and constraints.



Optimization and simulation

Simulation is a technique used to mimic the behavior
of a system.

Simulation is used to answer “what-if” type of
guestions.

Simulation is a powerful technique for analyzing
complex systems for performance evaluation

Decision makers would be interested in examining a
number of scenarios rather than just looking at one
single solution that is optimal; simulation is useful in
such situations.



Optimization and simulation

Possible to obtain near-optimal solutions by
repeatedly simulating a system with various sets of
Inputs.
Typical examples where simulation is used are

« Analysis of river basin development alternatives
e Multi-reservoir operation problems

« (Generating trade-offs of water allocations among
various uses

e Conjunctive use of surface and ground water
resources.



Optimization: Methods of
Calculus



Optimization: Methods of Calculus

Function of a single variable:

« Let f(x) be a function of a variable x, defined in the
range a<x<b

f(x) 4 X

=

a b X
e Local maximum: value higher than any other value In
neighbourhood; x;, X; and X, are local maxima

f(xy = Axy) < f(xq) > 1(x; + Axy)



Optimization: Methods of Calculus

e Local minimum: value lower than any other value in
neighbourhood; x, and x, are local minima

f(x; = AX;) = f(Xxp) < (X, + AX,)

o Saddle point: The slope of the function is zero at
saddle point (xg); value of the function is lower on
one side and higher on other (or vice-versa).

f(Xs — AXg) < f(X5) < f(Xs + AXc); Slope of f(x) at x = x¢ is
Z€ero



Optimization: Methods of Calculus

e Global maximum: value of function is higher than
any other value in the defined range (point x; in the
figure)

e Global minimum: value of function is lower than any
other value in the defined range (point x, in the
figure)

f(x) 4 X




Optimization: Methods of Calculus

e Convex functions:
f(x) A

f(Xy)
af (%) +(1=a) f (x,)

flax +(1-a)x, | %/

\

f(x)] A

>

X, X

X1 05X1+(1—05)X2

e A straight line (AB) drawn between any two points is
above the curve



Optimization: Methods of Calculus

f(x) Is said to be strictly convex if

f[ax1+(l—a)xz]<af(X1)+(1—a)f(xz) 0<axl
 If the inequality sign < is replaced by < sign, then f(x)
IS said to be convex but not strictly convex
« If the inequality sign < is replaced by = sign, f(x) is a
straight line and satisfies the condition for convexity
mentioned above; A straight line is a convex function

 If a function is strictly convex, slope increases
continuously

For a strictly convex function,

2

f
™ > ()



Optimization: Methods of Calculus

 Concave function

FOO
f [ax1+(1—a)xz}
f(X,) // 7\5
af(x)+(1-a)f(x,)
f(x)
X, X, X

ax +(1-a)x,

e A straight line (AB) drawn between any two points is
below the curve



Optimization: Methods of Calculus

f(x) Is said to be strictly concave Iif

f[ax1+(1—a)xz]>af(X1)+(1—05)f(X2) 0<axl
 If the inequality sign > is replaced by > sign, then f(x)
IS said to be concave but not strictly concave.
« If the inequality sign < is replaced by = sign, f(x) is a
straight line and satisfies the condition for concavity
mentioned above; A straight line is a concave function

 If a function is strictly concave, slope increases

continuously
. . d*f
For a strictly concave function, T S 0




Optimization: Methods of Calculus

e A straight line is both convex and concave and is
neither strictly convex nor strictly concave.

* Alocal minimum of a convex function is also its global
minimum.

e Alocal maximum of a concave function is also its
global maximum.

« The sum of strictly convex functions is strictly convex

 The sum of strictly concave functions is strictly
concave.



Optimization: Methods of Calculus

 If f(x) Is a concave function, —f(x) is a convex function

and vice versa. aximum

Concave

£(X)

(x)

Convex

minimum



Optimization: Methods of Calculus

« Iff(x) Is a convex function and o IS a constant,

a f(X) Is a convex function if o > 0 and
a f(x) Is a concave function if a <0



Optimization: Methods of Calculus

e At stationary point, the slope of function is zero

. . ... df
X = Xy IS a stationary point if ™

=0

Xo

Sufficiency condition is examined as follows

2
o |If Z I >0 for all x, f(x) is convex and stationary point
X
is a global minimum  f(x)} X5




