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Summary of the previous lecture

e Optimization of a function of a single variable
necessary condition f (X) =0

Sufficiency condition f"(X)‘ <0 f (X) . >0
X
Function of multiple variables
.. of of of
necessary condition = = e =—2=0
0%, OX, OX,
Sufficiency condition: (X)) 0 (X))
X oxox,
Hessian matrix H[ f(X)]= azfx(lx) az);l();)
| OX,0%, x|

* H positive definite at X = X, ... Minimum
« H negative definite at X = X, .... Maximum



Example — 1

Examine the function for convexity/concavity and
determine the values at extreme points

f(X)=—x —x; —4x —8

The stationary point is obtained by solving

of
ﬂ=—2x1—4=0 and ——=—2% =0
OX 28

X, =-2, X,=0
X =(~2,0)



Example — 1 (Contd.)

e Hessian matrix Is

0%f (X)) &f(X)]

OX; OX,OX,
o’ f(X) o°f(X)
| OX,0X% OX5 _(_2’0)

HF(X)]-

Hesslian matrix evaluated at stationary point (-2,0)



Example — 1 (Contd.)

f(X)=-x"—xZ—-4x -8 (021 (X) & f(X)]
( ) | T X AKX o
of 2 o f(X) &*f(X)
_:—2X1—4 0 f =0 X, 0%, 5X22
%, O%0X, :

2

0 1; _

X

2

X, OX,0%,

2
o f _ 5



Example — 1 (Contd.)

Hessian matrix is 5 o
Hi f(X)]|=
SIS
Eigen values of Hessian matrix:

At-HL ()] =0

A+2 0
\zh4ﬂ={ }
0 A+2

(A+2)° =0

Eigen valuesare 4 =-2,4,=-2



Example — 1 (Contd.)

* As both the eigen values are negative, the matrix is
negative definite

Hence the function has local maximum at X =(-2,0)

As the Hessain matrix does not depend on x; and
X, and it Is negative definite matrix, the function is
strictly concave and therefore the local maximum
IS also the global maximum



Example — 2
Determine the extreme values of the function
f(X)=x +X —3x —12x, + 20

The stationary point is obtained by solving

ﬂ=3xf—3:0 X, ==1
OX,
and
of
—— =3x,-12=0 -+
ox, Xp = £2

Four solutions
X =(-1-2), (12), (L-2) and (-1,2)



Example — 2 (Contd.)

e Hessian matrix Is

0%f (X)) 8f(X)]

OX; OX,OX,
o*f(X) o°f(X)
| OX,0%, OX;

f(X)=x +X —3x —12x, + 20

ﬂ:3xf—3
Xl

2

P g

o° f

OX,OX,




Example — 2 (Contd.)

f(X)=x +X —3x —12x, + 20

2
OX, OX,0X%,
2
0 Z = 60X,
OX5

Hessian matrix 1s



Example — 2 (Contd.)
Hessian matrix Is 6x O
IR
Eigen values of Hessian matrix:
At-HL ()] =0

\M-H\:F?Xl 0 }:O

A —0X,
(2-6%)(1-6x,)=0

Eigen values are A4 =6x, 4, =6X,



Example — 2 (Contd.)

Hessian matrix at 6y 5
HLfF(X)]=|
0 6x,
(1.2)
Eigen values are A4 =6x, 4, =6X,
A =6, 4, =12

All the eigen values of Hessian matrix are positive,
hence the matrix is positive definite at X =(1,2)

Therefore the function has a local minimum at this point
foin (X) =1 +2°-3x1-12x2+20=2



Example — 2 (Contd.)

Hesslan matrix at 6x 0

Hi f(X)|=] *

KICIE (g A
Eigen values are A4 =6x, 4, =6X,

A =6, A, =—12

All the eigen values of Hessian matrix are negative,
hence the matrix is negative definite at X =(-1,-2)

Therefore the function has a local maximum at this point
fo (X)=(-1) +(-2)" =3x(-1)-12x(-2)+20

=38



Example — 2 (Contd.)

Hessian matrix at

100

0
6xj(—1,2) or (1,-2)

Eigen values are -6 and 12 (or 6 and -12)

The H matrix is neither positive definite nor negative
definite at these two points



Constrained Optimization



Optimization: Methods of Calculus

Constrained Optimization:
« f(X) is a function of n variables represented by vector X
= (Xg) X, Xgy oo Xn)

Maximize or Minimize f(X)

Subject to (s.t.) g;(X) <0 ]=1,2,....m
m<n

f(X) and g(X) may or may not be linear functions

e If m > nthe problem is over defined and there will be
no solution unless redundant constrains are present



Optimization: Methods of Calculus

Constrained Optimization:
e Function with equality constraints
« Function with inequality constraints

Function with equality constraints \, a
Maximize or Minimize f(X) = &y
(B1)g0=0 =12 ”, g

\

Two methods discussed
e Direct substitution
e Lagrange multipliers



Optimization: Methods of Calculus

Direct substitution:

e Reduce the problem to an unconstrained problem by
expressing m variables in terms of the remaining (n -
m) variables.

For example,
3 variables : Xy, X, X5
2 constraints

X,, X3 May be expressed in terms of x; and
render the problem as unconstrained
problem with only x, involved



Optimization: Methods of Calculus

Limitation:
« With higher no. of variables and constraints this
method becomes quite cumbersome.

e Constraint equations are often non-linear — difficult to
solve them simultaneously.



Example — 3
Minimize the function
f(X)=x +X; +4x%X,

S.L.
X, +X,—4=0

Solution:
X, =4-X,
The modified function is
F(X)=(4-%,) +x2+4(4-x%,)%,
=16+8x, — 2x;



Example — 3 (Contd.)

ﬂ:8—4x2
OX,
of
8_x2_
8—4x, =0
X, =2

0

= — < O’
X2 L o( o
GI%I maximum occurs at X, =2



Optimization: Methods of Calculus

Lagrange multipliers:

Maximize or Minimize f(X)
S.1.
g;(X) =0 j=1,2,....m

* Introduce one additional variable corresponding to each
constraint.

« Lagrange function % IS written as

gy =Tl )_Z[\JGJ "

N I

* When g;(X) = 0, optimizing L is same as optimizing f(X)
e The problem is transformed to unconstrained
optimization problem



Optimization: Methods of Calculus

L=f(X)—ﬂ1g1(X)—lzg2(X)— ---- _ﬂ“mgm(x)

e The problem of n variables with m constraints is
changed to a single problem of (n+ m) variables with
no constraints.



Optimization: Methods of Calculus

Necessary condition: For a function f(X) subject to the
constraints g;(X) =0, ] =1, 2, ..... mto have a relative
optimum at a point X* is that the first partial derivatives of
the Langrange function with respect to each of its

arguments must be zero.

L= 1 (X) -2 4,0,(X)

—=0 i=1,2,....N

—— =0 ]=1,2,....m



Optimization using Calculus

The (n + m) simultaneous equations are solved to get a
solution, (X, 17) .

Sufficiency condition:

The second partial derivatives are denoted by

o°L
ij — i=1,2,....n
OX;0X (- )
_ o9, (X)

9 ox ]=1,2,....m

| X*



Optimization using Calculus

Sufficiency condition:

n terms m terms
AN AN
4 N~ N
KLM—Z L12 Lln i 91 Y921 - Ym
N Ly L,-Z ... L,, i 92 Y2 - O
terms o
b= N.omo " e e b2l G0 G o O
9 O 0 ¢ 0 0 0
S 9 9 O i 0 0 0
terms<
\ Om1 O Jimn i 0 0 0




Optimization using Calculus

Leads to a polynomial in Z of the order (n —m)
Solve for Z

If all Z values are positive ..... X* corresponds to
minimum

If all Z values are negative ..... X* corresponds to
maximum

If some values are positive and some are negative ...

IS helther a minimum nor a maximum.

X*



