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Summary of the previous lecture

• Function with inequality constraints
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Minimize f(X)
s.t. 
gj(X) < 0           j = 1, 2, ….. m
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Kuhn – Tucker conditions:

• Introduction to Linear Programming
• Graphical method



Example – 1
Maximize

s.t.
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Constraints

Decision variables
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LP – Graphical Solution
Consider  
Maximize

s.t.
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1 23 2Z x x 
(Instead of 

)
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Multiple 
solutions
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with Z = 18)



LP – Graphical Solution
Unbounded solution
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Feasible space 
unbounded



LP – Graphical Solution
Infeasible solution
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No feasible 
space



LP – Graphical Solution
Infeasible solution
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Constraints are 
such that they 
do not have 
intersecting 
feasible region



LP – Graphical Solution
Infeasible solution
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Although the 
constraints form 
an intersecting 
region, the 
region violates 
non-negativity 
conditions



Linear Programming
General form of LP:

Maximize   Z
s.t. 
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Linear Programming

i.e.,

Maximize            Z

s.t. 
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Linear Programming
• In a LP problem, there are m equations and n decision 

variables.
• If m > n, there would be m – n redundant equations 

which can be eliminated.
• If m = n, either there is a unique solution in which case 

there can be no optimization or there is no solution to 
the problem, in which case the constraints are 
inconsistent.

• If m < n, it corresponds to an under-determined set of 
linear equations; if there is one solution, then there are 
infinite number of solutions. The problem is to find the 
optimal solution from among these infinite no. of 
solutions.
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Linear Programming

• The characteristics of a LP problem stated in general 
form are

1. The objective function is of the “maximization” 
type. 

2. All the constraints are of equality type.
3. All the decision variables are non-negative.
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Linear Programming

1. The objective function is of the “maximization” type:
• The minimization of a function is equivalent to the 

maximization of the negative of the same function.
for example,

Minimize

can be expressed as

Maximize
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Linear Programming

2. All the constraints are of equality type: 
Inequality constraint of the form,

may be converted to an equality constraint by adding a 
non-negative variable

xn+1 is called a slack variable
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Linear Programming

For example,

may be converted to 
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Linear Programming

if the constraint is of greater than type,

a non-negative variable xn+1 is subtracted from the 
LHS to make it an equality constraint

xn+1 is called a surplus variable
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Linear Programming

For example,

may be converted to 
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1 2 5x x 
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Linear Programming

3. All the decision variables are non-negative
• In most of the engineering problems, decision 

variables represent some physical variables; hence 
most variables are non-negative.

• Occasionally some problems may involve variables 
unrestricted in sign. In such cases, the non-negativity 
condition must be forced in the problem formulation.

• An unrestricted variable can be written as the 
difference of two non-negative variables.
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Linear Programming

• For example, xi is unrestricted in sign; it is replaced by 
two variables xi1 and xi2 such that

where

xi will be negative if
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LINEAR PROGRAMMING
Simplex Method



LP – Simplex Method

Motivation for the Simplex method

Max Z =

s.t.
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LP – Simplex Method

The constraints are converted as
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2 equations 
and 
4 unknowns

x3, x4 are slack variables


