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Summary of the previous lecture
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• Graphical method
• General form of LP
• Motivation for the simplex method



LP – Simplex Method

Motivation for the Simplex method

Max Z =

s.t.
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LP – Simplex Method

In the general form of LP, the constraints are 
converted as
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LP – Simplex Method
• In general, m equations in n unknowns (n > m), 

including slack and surplus variables
• It is possible to solve for m variables in terms of the 

other (n – m) variables
• Basic solution: A basic solution is a solution obtained 

by setting (n – m) variables to zero
• The m variables whose solution is sought by setting 

the remaining (n – m) variables to zero are called the 
basic variables

• The (n – m) variables which are set to zero are called 
the non-basic variables. It may so happen that some 
variables may take a value of zero arising out of the 
solution of the m equations, but they are not non-
basic variables as they are not initialized to zero.
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LP – Simplex Method

• Since out of n variables, any of the (n – m) variables 
may be set to zero, the no. of basic solutions will 
correspond to the no. of ways in which m variables 
can be selected out of n variables i.e., 

For the problem being considered, with n = 4 and m = 
2,  the no. of basic solutions will be
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LP – Simplex Method

• In the example, the basic solutions are
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x1 x2 x3 x4 Point on graph Feasible
0 0 60 40 O Y
0 6 0 16 A Y
0 10 -40 0 B N
8 2 0 0 C Y
10 0 10 0 D Y
12 0 0 -8 E N

1 2 35 10 60x x x  
1 2 44 4 40x x x  
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LP – Simplex Method

• All the basic solutions need not (and, in general, will 
not) be feasible. 

• A basic solution which is also feasible is called as the 
Basic Feasible Solution.

• All the corner points of the feasible space are basic 
feasible solutions.
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LP – Simplex Method

• As the size of a LP problem increases, the no. of 
basic solutions also increases. 

• The possible no. of basic feasible solutions can be 
too large to be enumerated completely.

• The goal would be, starting with an initial basic 
feasible solution, to generate better and better basic 
feasible solutions until the optimal basic feasible 
solution is obtained.
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LP – Simplex Method
Algebraic approach (Simplex algorithm):

• To solve the problem algebraically, we must be able 
to sequentially generate a set of basic feasible 
solutions
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LP – Simplex Method

1. Determine an initial basic feasible solution:
• The best way to obtain an initial basic feasible 

solution would be to put all the decision variables      
(n – m in no., if we have one slack/surplus variable 
associated with each constraint) to zero.

• In the example, choose the slack variables x3 and x4
to be basic and x1 and x2 to be non-basic 
(i.e., set x1 = 0 and x2 = 0 )
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LP – Simplex Method

• Solve the m (=2) equations for m basic variables
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LP – Simplex Method

• Now we have to generate another basic feasible 
solution from  the initial basic feasible solution such 
that there is an improvement in the objective function 
value, Z.

• The new solution is obtained as follows
• ONE presently non-basic variable (x1 or x2) must 

be selected to enter the current basis, thus 
becoming basic.

• ONE presently basic variable (x3 or x4) must be 
selected to leave the current basis, thus becoming 
non-basic.
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LP – Simplex Method

First operation:

• Either x1 or x2 can enter the basis.
• The question now is, out of x1 and x2 which variable 

should enter the basis?
• Since the problem is to maximize the objective 

function (OF), we must look for the variable which will 
increase the OF value the fastest.

• Because the coefficient of x2 in the OF is higher than 
that of x1, x2 increases the OF value faster than x1
does. Hence x2 should enter the basis.
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LP – Simplex Method

Second operation:
• As the value of newly selected basic variable x2 is 

increased (x1 still being zero), the other two variables, 
x3 and x4 (which are currently in the basis) keep  
reducing.

• One of these will reach its lower limit (zero) earlier 
than the other

• x3 = 0 when 10x2 = 60 or x2 = 6
• x4 = 0 when 4x2 = 40 or x2 = 10
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LP – Simplex Method
• To increase the OF value, we would be interested in 

increasing x2 to the greatest extent possible.
• As soon as x2 reaches 6, x3 becomes zero (x4 is still 

non-zero)
• Therefore for x2 entering the basis, x3 must leave the 

basis.
• Therefore new basis is  

• The new basic solution is obtained by Guass Jordan 
elimination method.

• The process continues until the maximum value of 
the function is arrived at.
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Example – 1
Maximize

s.t.
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Example – 1 (Contd.)
The problem is converted into standard LP form

s.t.
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n = no. of variables = 5;     m = no. of constraints =3
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Example – 1 (Contd.)

Seek solution from m variables by setting (n – m) 
variables to zero

The solution is obtained by creating a table with 
coefficients of variables.
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x1 and x2 are non basic variables (whose values 
are set to zero)

x3, x4 and x5 are basic variables (whose solution 
is sought)



Example – 1 (Contd.)
Iteration-1
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Basis Row Z x1 x2 x3 x4 x5 bi

Z 0 1 -3 -5 0 0 0 0

x3 1 0 1 0 1 0 0 4

x4 2 0 0 2 0 1 0 12

x5 3 0 3 2 0 0 1 18
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