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Summary of the previous lecture

 Hydropower Generation
e Simulation of reservoir operation for
hydropower generation
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RESERVOIR SYSTEMS —
RANDOM INFLOWS



Reservoir Systems — Random Inflows

 Uncertainty in hydrologic variables (inflows, rainfall,
evapotranspiration etc.)

 Two classical approaches to deal uncertainty Iin

optimization models

 Implicit Stochastic Optimization (ISO): optimization
model deterministic; sequences of random inputs;
large number of model runs.

« Explicit Stochastic Optimization (ESO):
optimization model stochastic; probability
distributions of inputs; single run of model.

» Chance Constrained Linear Programming
(CCLP)

» Stochastic Dynamic Programming (SDP)



Basic Probability Theory
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« Random variable: (intuitively) ARV iIs a variab
whose value cannot be known with certainty, until
the variable actually takes on a value.

e Discrete R.V.: Set of values a random variable can
assume is finite (or countably infinite).
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Basic Probability Theory

e Continuous R.V.: If the set of values a random
variable can assume is infinite (the r.v. can take on
values on a continuous scale)
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Basic Probability Theory
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Example — 1
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Consider the following pdf j{ (,}% ZO
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f(x)=2e* x>0 & \x
21
= D ohsewhes- ~ W gu Ar
Derive the cdf D <

What is the probability that X lies between 1 and 2
Determine ‘X’ such that P[X <x] =0.5
Determine ‘X’ such that P[X > x] =0.75

N



Example — 1 (Contd.)

1. CDF: ) )
F(x) = j f(x)dx:j f (x)dx
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Example — 1 (Contd.)

2. P[L<X<2]=F@2)-F()
F(2)=|1-e7?]=0.982

. . -2x1 | ?\' (

P[1 < X <2] = 0.982 - 0.865
= 0.117

3. Determine X’ such that P[X < X] =

0.5

PIX<x] = [1—e‘2X]:O.5 K: -
—2Xx=1n0.5 \ ( >
X=0.35
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Example — 1 (Contd.)

Determine ‘X’ such that P[X > x] =0.75
P[X > x] =1—7P[X < x: =0.75

o
1-[1-e>]=075 )
e ?* =0.75
—2x=1In0.75
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Basic Probability Theory
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E(X): Expected value of ‘X’ Y

: First moment about the origin/
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Basic Probability Theory
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Sample estimate - Varlance/“ P*‘%Mﬁ o
(% =X)’ ey

n: No. of observatlons

SZ _ =l
n -1 In the sample
Standard deviation:
o =+ o° +ve square root of
variance
S =+4/S°

Coefficient of variation: (\\ P/C(/
G = o C}wg%L /
sample estimatem m
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