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Summary of the previous lecture
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• Hydropower Generation
• Simulation of reservoir operation for 

hydropower generation

• Iterative procedure for obtaining Ht, Rt, Et and
St+1

• Primary and additional power
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RESERVOIR SYSTEMS –
RANDOM INFLOWS
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Reservoir Systems – Random Inflows
• Uncertainty in hydrologic variables (inflows, rainfall, 

evapotranspiration etc.)
• Two classical approaches to deal uncertainty in 

optimization models
• Implicit Stochastic Optimization (ISO): optimization 

model deterministic; sequences of random inputs; 
large number of model runs.

• Explicit Stochastic Optimization (ESO): 
optimization model stochastic; probability 
distributions of inputs; single run of model.
 Chance Constrained Linear Programming 

(CCLP)
 Stochastic Dynamic Programming (SDP)
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Basic Probability Theory
• Random variable: (intuitively) A RV is a variable 

whose value cannot be known with certainty, until 
the variable actually takes on a value.

• Discrete R.V.:  Set of values a random variable can 
assume is finite (or countably infinite). 
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Basic Probability Theory
• Continuous R.V.: If the set of values a random 

variable can assume is infinite (the r.v. can take on 
values on a continuous scale)

f(x) > 0       and
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Basic Probability Theory

PDF CDF
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Example – 1
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Consider the following pdf

x > 0

1. Derive the cdf
2. What is the probability that X lies between 1 and 2
3. Determine ‘x’ such that P[X < x] = 0.5
4. Determine ‘x’ such that P[X > x] = 0.75
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Example – 1 (Contd.)
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1. CDF:
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Example – 1 (Contd.)
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2. P[1 < X < 2] = F(2) – F(1) 

P[1 < X < 2] =  0.982 – 0.865
=  0.117

2 2(2) 1 0.982F e     
2 1(1) 1 0.865F e     

3. Determine ‘x’ such that P[X < x] = 0.5                   
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Example – 1 (Contd.)
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4. Determine ‘x’ such that P[X > x] = 0.75                       
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Basic Probability Theory
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: First moment about the origin
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Sample estimate - Variance :

Standard deviation:

Coefficient of variation:
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Basic Probability Theory


