
.6cm
.

Introduction to Formal Languages,
Automata and Computability

Finite State Automata : Characterization, Properties
and Decidability

K. Krithivasan and R. Rama

Introduction to Formal Languages, Automata and Computability – p.1/26

Finite State Automata and Regular
Grammars

Theorem If a language L is accepted by a finite
nondeterministic automaton, then L can be accepted
by a right linear grammar and conversely.
Let L be a language accepted by a finite
nondeterministic automaton M = (K, Σ, δ, q0, F)
where K = {q0, . . . , qn}. If w ∈ L, then w is obtained
by the concatenation of symbols corresponding to
different transitions starting from q0 and ending at a
finite state. Hence for each transition by M while
reading a symbol of w, there must correspond to a
production of a right linear grammar G. The
construction is as below:

G = ({S0, S1, . . . , Sn}, Σ, P, S0)
Introduction to Formal Languages, Automata and Computability – p.2/26

contd

where productions in P are
(i) Si → aSj if δ(qi, a) contains qj for qj /∈ F
(ii) Si → aSj and Si → a if δ(qi, a) contains qj,
qj ∈ F .
To prove L(G) = L = L(M).
From the construction of P , one is able to see that
Si ⇒ aSj if and only if δ(qi, a) contains qj and
Si ⇒ a if and only if δ(qi, a) ∈ F . Hence if
S0 ⇒ a1S1 ⇒ a1a2S2 ⇒ · · · ⇒ a1 . . . an if and only
if δ(q0, a1) contains q1, δ(q1, a2) contains q2, . . . ,
δ(qn−1, an) contains qn where qn ∈ F .
Hence w ∈ L(G) if and only if w ∈ L(M).

Introduction to Formal Languages, Automata and Computability – p.3/26

contd

Let G = (N,T, P, S) be a right linear grammar. An equivalent NFSA
with ε-moves is constructed as below:
Let M = (K,T, δ, [S], [ε]) where
K = {[α]|α is S or suffix of some right-hand side of a production in P ,
the suffix need not be proper}.
The transition function δ is defined as follows:
(i) δ([A], ε) = {[α]|A → α ∈ P}

(ii) For a ∈ T or α ∈ T ∗N , then δ([aα], a) = {[α]}. Clearly [α] ∈

δ([α], w) if and only if S
∗

⇒ xA ⇒ xyα where A → yα ∈ P and

xy = w. M accepts w if and only if S
∗

⇒ xA ⇒ xy = w, w ∈ T ∗.

Hence the converse follows.

Introduction to Formal Languages, Automata and Computability – p.4/26

Example

Let G = ({S,A}, {0, 1}, {S → 0A,A → 10A/ε}, S)
be a regular grammar. The corresponding NFSA will
be

[S] [0A] [A]

[10A]

[ε]

M :
ε 0

1 ε

ε

Clearly L(G) = L(M) = 0(10)∗.

Introduction to Formal Languages, Automata and Computability – p.5/26

Pumping Lemma for Regular Sets

Theorem[Pumping Lemma] Let L be a regular
language over T . Then there exists a constant k
depending on L such that for each w ∈ L with
|w| ≥ k, there exists x, y, z ∈ T ∗ such that w = xyz
and
(i) |xy| ≤ k
(ii) |y| ≥ 1
(iii) xyiz ∈ L ∀i ≥ 0.
Let M = (K, Σ, δ, q0, F) be a DFSA accepting L. Let
K = {q1, . . . , qn}. Let w = a1, . . . , am ∈ L where
ai ∈ Σ, 1 ≤ i ≤ m, m ≥ k.
Let the transitions on w be as below:

Introduction to Formal Languages, Automata and Computability – p.6/26

contd

q1a1 . . . am ` a1q2a2 . . . am ` · · · ` a1 . . . amqm+1

where qj ∈ K, 1 ≤ j ≤ m + 1. Here
a1 . . . ai−1qai . . . am means the FSA is in state q after
reading a1 . . . ai−1 and the input head is pointing to ai.
Clearly in the above transitions, m + 1 states are
visited, but M has only n states. Hence there exists
qi, qj such that qi = qj. Hence for

q1a1 . . . am ` a1q2a2 . . . am ` · · · ` (a1 . . . ai−1qiai . . . am . . .

` a1 . . . aj−1qiaj . . . am) ` · · · ` a1 . . . amqm+1

Introduction to Formal Languages, Automata and Computability – p.7/26

contd

end at qi, where the transitions between the brackets
start and processing a string αt for t ≥ 0. Hence if
x = a1 . . . ai−1, y = ai . . . aj , z = aj+1 . . . am,
xytz ∈ L ∀t ≥ 0 where |xy| ≤ m, since qi is the first
state identified to repeat in the transition and |y| ≥ 1.
Hence the lemma.

Introduction to Formal Languages, Automata and Computability – p.8/26

Example

Let L = {anbn|n ≤ 1}. If L is regular, then by the
above lemma there exists a constant ‘k’ satisfying the
pumping lemma conditions. Choose w = akbk.
Clearly |w| > k. Then w = xyz, |xy| ≤ k and
|y| ≥ 1. If |x| = p, |y| = q, |z| = r, p + q + r = 2k
and p + q ≤ k. Hence xy consists of only a’s and
since |y| > 1, xz /∈ L as number of a’s in x is less
than k and |z| = k. Hence pumping lemma is not true
for i = 0 as xyiz must be in L for i ≥ 0. Hence L is
not regular.
One can see that not only regular languages satisfy the
pumping lemma property, but also some nonregular
languages do so. Introduction to Formal Languages, Automata and Computability – p.9/26

example

Let L = {anbn|n ≤ 1}. We know L is nonregular.
Consider L# = (#+L) ∪ {a, b}∗ where # /∈ {a, b}.
L# satisfies all the properties of pumping lemma with
k = 1. For any w ∈ #+L, let x = λ, y = # and for
any w ∈ Σ∗, x = λ and y is the first letter of w.
However L# is not regular, which can be seen as
below. Let h be a homomorphism defined as below:
h(a) = a for each a ∈ Σ and h(#) = λ. Then
L = h(L# ∩ #+Σ∗). Clearly #+Σ∗ regular. If L# is
regular, then L# ∩ #+Σ∗ is regular as regular
languages are closed under intersection. Also regular
languages are closed under homomorphism and hence
L is regular which is a contradiction. Hence L# is
nonregular. Introduction to Formal Languages, Automata and Computability – p.10/26

Closure Properties

Theorem The family of regular languages is closed under the following
operations (1) union (2) intersection (3) complementation (4)
catenation (5) star and (6) reversal.
The six closure properties will be proved either through finite
automaton or regular grammars.

Union : Let L1 and L2 be two regular languages generated by two right

linear grammars G1 = (N1, T1, P1, S1) and G2 = (N2, T2, P2, S2)

(say). Without loss of generality let N1 ∩ N2 = φ. L1 ∪ L2 is gen-

erated by the right linear grammar. G′ = (N1∪N2∪{S}, T1∪T2, P1∪

P2 ∪ {S → S1, S → S2, S}). L(G′) = L(G1) ∪ L(G2) because, the

new start symbol of G′ is S from which we reach S1

Introduction to Formal Languages, Automata and Computability – p.11/26

contd

or S2 using the rules S → S1, S → S2. After this step one can use only
rules from P1 or P2, hence deriving words in L1 or L2 or in both.
Intersection : Let L1, L2 be any two regular languages accepted by
two DFSA’s M1 = (K1,Σ1, δ1, q1, F1) and M2 = (K2,Σ2, δ2, q2, F2).
Then the DFSA M constructed as below accepts L1 ∩ L2.
Let M = (K,Σ, δ, q0, F) where K = K1 × K2, q0 = (q1, q2),
F = F1 × F2, δ : K × Σ → K is defined by
δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)).

One can see that for each input word w, M runs M1 and M2 parallely,

starting from q1, q2 respectively. Having finished reading the input, M

accepts only if both M1,M2 accept. Hence L(M) = L(M1) ∩ L(M2).

Introduction to Formal Languages, Automata and Computability – p.12/26

contd

Complementation : Let L1 be a regular language
accepted by DFSA M = (K, Σ, δ, q0, F). Then
clearly the complement of L is accepted by the DFSA
M c = (K, Σ, δ, q0,K − F).
Concatenation : We prove this property using the
concept of regular grammar. Let L1and L2 and G1

and G2 be defined as in proof of union of this theo-
rem. Then the type 3 grammar G constructed as below
satisfies the requirement that L(G) = L(G1).L(G2).
G = (N1 ∪N2, T1 ∪ T2, S1, P2 ∪P) where P = {A →

aB/A → aB ∈ P1} ∪ {A → aS2|A → a ∈ P1}.
Introduction to Formal Languages, Automata and Computability – p.13/26

contd

Clearly L(G) = L(G1).L(G2) because any derivation
starting from S1 derives a word w ∈ L1 and for G,
S1

∗
⇒ wS2. Hence if S2

∗
⇒ w′ by G2, then S1

∗
⇒ ww′

by G.
Catenation Closure : Here also we prove the closure
using regular grammar. Let L1 be a regular grammar
generated by G1 = (N1, T1, P1, S1). Then the type 3
grammar G = (N1 ∪ {S0}, T1, S0, {S0 → ε, S0 →
S1} ∪ {A → aS1|A → a ∈ P1} ∪ P1). Clearly G
generates L∗

1.
Reversal : The proof is given using the NFSA
model. Let L be a language accepted by a NFSA with
ε-transitions which has exactly one final state.

Introduction to Formal Languages, Automata and Computability – p.14/26

contd

(Exercise : For any NFSA, there exists an equivalent
NFSA with ε-transitions with exactly one final state).
Let it be M = (K, Σ, δ, q0, {qf}). Then the reversal
automaton M ′ = (K, Σ, δ′, qf , {q0}) where δ′ is
defined as δ′(q, a) contains p if δ(p, a) contains q for
any p, q ∈ K, a ∈ Σ ∪ {ε}. One can see that if
w ∈ L(M) then wR ∈ L(M ′) as the in the modified
automaton M ′ each transition takes a backward
movement on w.

Introduction to Formal Languages, Automata and Computability – p.15/26

contd

Theorem Regular languages are closed under homomorphism.
Let r be the regular expression for the regular language L and h be the
homomorphism. h(r) is an expression obtained by substituting h(a)

for each symbol a in r. Clearly h(a) is a regular expression. Hence
h(r) is a regular expression. For every w ∈ L(r) the corresponding
h(w) will be in L(h(r)) and conversely.
Theorem Let L1 and L2 be two regular languages. Then L1/L2 is also
regular.
Let L1 be accepted by a DFSA M1 = (K1,Σ1, δ1, q1, F1).

Let Mi = (K1,Σ1, δ1, qi, F1) be a DFSA with qi as

Introduction to Formal Languages, Automata and Computability – p.16/26

contd

its initial state, for each qi ∈ K1. Construct an automaton M that
accepts L2 ∩ L(Mi). If there is a successful path from the initial state
of this automaton M to its final states, then L2 ∩ L(Mi) is not empty.
If so add qi to F .
Let M = (K1,Σ1, δ, q0, F) . One can see that L(M) = L1/L2 for if
x ∈ L1/L2 whenever for any y ∈ L2, δ1(q0, xy) ∈ F1. Hence
δ(q0, x) = q and δ(q, y) ∈ F1.

Conversely if x ∈ L(M), then δ(q0, x) = q, q ∈ F . By construction

there exists a y ∈ L2 such that δ(q, y) ∈ F1, implying xy ∈ L1 and

x ∈ L1/L2. Hence the proof.

Introduction to Formal Languages, Automata and Computability – p.17/26

contd

Theorem Let h : Σ∗
1 → Σ∗

2 be a homomorphism. If
L′ ⊆ Σ∗

2 is regular, then h−1(L′) = L ⊆ Σ∗
1 will be

regular.
Let M = (K, Σ2, δ, q0, F) be a DFSA such that
L(M) = L′. We construct a new FSA M ′ for
h−1(L′) = L from M as below:
Let M ′ = (K, Σ1, δ

′, q0, F) be such that K, q0, F are
as in M .
The construction of the transition function δ′ is
defined as:

δ′(q, a) = δ(q, h(a)) for a ∈ Σ1.

i.e., Here h(a) is a string over Σ2.Introduction to Formal Languages, Automata and Computability – p.18/26

contd

For if x ∈ Σ∗
1, and x = ε,

δ′(q, x) = δ(q, h(x))
i.e., δ′(q, ε) = q = δ(q, h(ε)) = δ(q, ε).
If x 6= ε, let x = x′a, then

δ′(q, x′a) = δ′(δ′(q, x′), a)

= δ′(δ(q, h(x′)), a)

= δ(δ(q, h(x′)), h(a))

= δ(δ(q, h(x′)h(a))

= δ(q, h(x′a)).

Hence one can see that L(M ′) = h−1(L(M)) for any
Introduction to Formal Languages, Automata and Computability – p.19/26

contd

input x ∈ Σ1. i.e.,

x ∈ L(M ′) iff δ′(q0, x) ∈ F

iff δ(q0, h(x)) ∈ F

iff h(x) ∈ L(M)

iff x ∈ h−1(L(M)).

Any family of languages which is closed under the six
basic operations of union, concatenation, Kleene clo-
sure, ε-free homomorphism, intersection with regular
sets and inverse homomorphism is called an Abstract
Family of Languages (AFL). Introduction to Formal Languages, Automata and Computability – p.20/26

contd

The family of regular sets is an AFL. This is seen
from the above closure properties. If a family is
closed under union, concatenation, Kleene closure,
arbitrary homomorphism, intersection with regular
sets and inverse homomorphism, it called a full AFL.
If a family of languages is closed under intersection
with regular set, inverse homomorphism and ε-free
homomorphism, it is called a trio. If a family of
languages is closed under all homomorphisms, as well
as inverse homomorphism and intersection with a
regular set, then it is said to be a full trio. The family
of regular sets is a full trio and a full AFL.

Introduction to Formal Languages, Automata and Computability – p.21/26

Decidability Theorems

Theorem Given a regular language L over T and w ∈ T ∗, there exists
an algorithm for determining whether or not w is in L.
Let L be accepted by a DFSA M (say). Then for input w one can see
whether w is accepted by M or not. The complexity of this algorithm
is O(n) where |w| = n. Hence membership problem for regular sets
can be solved in linear time.
Theorem There exists an algorithm for determining whether a regular
language L is empty, finite or infinite.

Let M be a DFSA accepting L. In the state diagram representation of

M with inaccessible states from the initial state removed, one has to

check whether there is a simple

Introduction to Formal Languages, Automata and Computability – p.22/26

contd

directed path from the initial state of M to a final
state. If so, L is not empty. Consider a DFSA M ′

accepting L, where inaccessible states from the initial
state are removed and also states from which a final
state cannot be reached are removed.
If in the graph of the state diagram of the DFSA, there
are no cycles, then L is finite. Otherwise L is infinite.
One can see that the automaton accepts sentences of
length less than n, (where n is the number of states of
the DFSA) if and only if L(M) is nonempty. One can
prove this statement using pumping lemma.

Introduction to Formal Languages, Automata and Computability – p.23/26

contd

That is |w| < n for if w were the shortest and |w| ≥ n then w = xyz

and xz is shorter than w that belong to L.

Also L is infinite if and only if the automaton M accepts at least one

word of length l where n ≤ l < 2n. One can prove this by using

pumping lemma. If w ∈ L(M), |w| ≥ n and |w| ≤ 2n, directly from

pumping lemma, L is infinite. Conversely if L is infinite, we show that

there should be a word in L whose length is l where n ≤ l < 2n. If

there is no word whose length is l, where n ≤ l < 2n, let w be the word

whose length is at least

Introduction to Formal Languages, Automata and Computability – p.24/26

contd

2n, but as short as any word in L(M) whose length is
greater than or equal to 2n. Then by pumping lemma,
w = w1w2w3 where 1 ≤ |w2| ≤ n and w1w3 ∈ L(M).
Hence either w was not shortest word of length 2n or
more or |w1w3| is between n and 2n − 1, which is a
contradiction.
Theorem For any two regular languages L1 and L2,
there exists an algorithm to determine whether or not
L1 = L2.
Consider L = (L1 ∩ L̄2) ∪ (L̄1 ∩ L2). Clearly L is
regular by closure properties of regular languages.

Introduction to Formal Languages, Automata and Computability – p.25/26

contd

Hence there exists a DFSA M which accepts L. Now
by the previous theorem one can determine whether L
is empty or not. L is empty if and only if L1 = L2.
Hence the theorem.

Introduction to Formal Languages, Automata and Computability – p.26/26

	Finite State Automata and Regular Grammars
	contd
	contd
	Example
	Pumping Lemma for Regular Sets
	contd
	contd
	Example
	example
	Closure Properties
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	contd
	Decidability Theorems
	contd
	contd
	contd
	contd

