
Run-time Environments
 - Part 1

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture –

Part 1

What is run-time support?
Parameter passing methods
Storage allocation
Activation records
Static scope and dynamic scope
Passing functions as parameters
Heap memory management
Garbage Collection

Y.N. Srikant 3

What is Run-time Support?

It is not enough if we generate machine code from intermediate
code
Interfaces between the program and computer system resources
are needed

There is a need to manage memory when a program is running
This memory management must connect to the data objects of
programs
Programs request for memory blocks and release memory blocks
Passing parameters to fucntions needs attention

Other resources such as printers, file systems, etc., also need to
be accessed

These are the main tasks of run-time support
In this lecture, we focus on memory management

Y.N. Srikant 4

Parameter Passing Methods
 -

Call-by-value
At runtime, prior to the call, the parameter is
evaluated, and its actual value is put in a location
private to the called procedure

Thus, there is no way to change the actual parameters.
Found in C and C++
C has only call-by-value method available

Passing pointers does not constitute call-by-reference
Pointers are also copied to another location
Hence in C, there is no way to write a function to insert a node
at the front of a linked list (just after the header) without using
pointers to pointers

Y.N. Srikant 5

Problem with Call-by-Value

p null

q
copy of p,
a parameter
passed to
function f

node inserted
by the function f

p null

node insertion as desired

Y.N. Srikant 6

Parameter Passing Methods
 -

Call-by-Reference
At runtime, prior to the call, the parameter is
evaluated and put in a temporary location, if it
is not a variable
The address of the variable (or the
temporary) is passed to the called procedure
Thus, the actual parameter may get changed
due to changes to the parameter in the called
procedure
Found in C++ and Java

Y.N. Srikant 7

Call-by-Value-Result

Call-by-value-result is a hybrid of Call-by-value and Call-by-
reference
Actual parameter is calculated by the calling procedure and is
copied to a local location of the called procedure
Actual parameter’s value is not affected during execution of the
called procedure
At return, the value of the formal parameter is copied to the
actual parameter, if the actual parameter is a variable
Becomes different from call-by-reference method

when global variables are passed as parameters to the called
procedure and
the same global variables are also updated in another procedure
invoked by the called procedure

Found in Ada

Y.N. Srikant 8

Difference between Call-by-Value, Call-by-
 Reference, and Call-by-Value-Result

program RTST;
var a: integer;
procedure Q;

begin a:= a+1; end
procedure R(x:integer);

begin x:= x+10; Q; end
begin a:= 1; R(a); print(a); end

call-by-
value

call-by-
reference

call-by-
value-result

2 12 11

Value of a printed

Note: In Call-by-V-R,
value of x is copied
into a, when proc R
returns. Hence a=11.

Y.N. Srikant 9

Parameter Passing Methods
 - Call-by-Name

Use of a call-by-name parameter implies a textual
substitution of the formal parameter name by the
actual parameter
For example, if the procedure
procedure R (X,I : integer);
begin I := 2; X := 5; I := 3; X := 1; end;

is called by R(B[J*2], J)
this would result in (effectively) changing the body to
begin J :=2; B[J*2] := 5; J :=5; B[J*2] := 1; end;
just before executing it

Y.N. Srikant 10

Parameter Passing Methods
 -

Call by Name
Note that the actual parameter corresponding
to X changes whenever J changes

Hence, we cannot evaluate the address of the
actual parameter just once and use it
It must be recomputed every time we reference
the formal parameter within the procedure

A separate routine (called thunk) is used to
evaluate the parameters whenever they are
used
Found in Algol and functional languages

Y.N. Srikant 11

Example of Using the Four Parameter
 Passing Methods

1. procedure swap
(x, y : integer);

2. var temp : integer;
3. begin
4. temp := x;
5. x := y;
6. y := temp;
7. end (*swap*);
8. ...
9. i := 1;
10. a[i]:=10; (* a: array[1..5]

of integer *)
11. print(i,a[i]);
12. swap(i,a[i]);
13. print(i,a[1]);

Results from the 4 parameter passing
methods (print statements)

call-by-
value

call-by-
reference

call-by-
val-result

call-by-
name

1 10
1 10

1 10
10 1

1 10
10 1

1 10
error!

Reason for the error in the Call-by-name Example

temp := i; (* => temp:=1 *)
i := a[i]; (* => i:=10 since a[i]=10 *)
a[i] := temp; (* => a[10]:=1 => index out of bounds *)

The problem is in the swap routine

Y.N. Srikant 12

Code and Data Area in Memory

Most programming languages distinguish between
code and data
Code consists of only machine instructions and
normally does not have embedded data

Code area normally does not grow or shrink in size as
execution proceeds

Unless code is loaded dynamically or code is produced
dynamically

As in Java – dynamic loading of classes or producing classes and
instantiating them dynamically through reflection

Memory area can be allocated to code statically
We will not consider Java further in this lecture

Data area of a program may grow or shrink in size
during execution

Y.N. Srikant 13

Static Versus Dynamic Storage Allocation

Static allocation
Compiler makes the decision regarding storage allocation
by looking only at the program text

Dynamic allocation
Storage allocation decisions are made only while the
program is running
Stack allocation

Names local to a procedure are allocated space on a stack
Heap allocation

Used for data that may live even after a procedure call returns
Ex: dynamic data structures such as symbol tables
Requires memory manager with garbage collection

Y.N. Srikant 14

Static Data Storage Allocation

Compiler allocates space for
all variables (local and global)
of all procedures at compile
time

No stack/heap allocation; no
overheads
Ex: Fortran IV and Fortran 77
Variable access is fast since
addresses are known at compile
time
No recursion

Main program
variables

Procedure P1
variables

Procedure P2
variables

Procedure P4
variables

Main memory

Y.N. Srikant 15

Dynamic Data Storage Allocation

Compiler allocates space only for golbal
variables at compile time
Space for variables of procedures will be
allocated at run-time

Stack/heap allocation
Ex: C, C++, Java, Fortran 8/9
Variable access is slow (compared to static
allocation) since addresses are accessed through
the stack/heap pointer
Recursion can be implemened

Y.N. Srikant 16

Activation Record Structure

Static and Dynamic links
(also called Access and Control link resp.)

(Address of) function result

Actual parameters

Local variables

Temporaries

Saved machine status

Space for local arrays

Note:

The position of the fields
of the act. record as
shown are only notional.

Implementations can
choose different orders;
e.g., function result
could be at the top of the
act. record.

Return address

	Run-time Environments�- Part 1
	Outline of the Lecture – Part 1
	What is Run-time Support?
	Parameter Passing Methods�- Call-by-value
	Problem with Call-by-Value
	Parameter Passing Methods�- Call-by-Reference
	Call-by-Value-Result
	Difference between Call-by-Value, Call-by-Reference, and Call-by-Value-Result
	Parameter Passing Methods�- Call-by-Name
	Parameter Passing Methods�- Call by Name
	Example of Using the Four Parameter�Passing Methods
	Code and Data Area in Memory
	Static Versus Dynamic Storage Allocation
	Static Data Storage Allocation
	Dynamic Data Storage Allocation
	Activation Record Structure

