
An Overview of a Compiler - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Compiler Overview

Outline of the Lecture

1 Compiler overview with block diagram
2 Lexical analysis with LEX
3 Parsing with YACC
4 Semantic analysis with attribute grammars
5 Intermediate code generation with syntax-directed

translation
6 Code optimization examples

Topics 1 to 4 have been covered in Part I of the lecture

Y.N. Srikant Compiler Overview

Compiler Overview

Y.N. Srikant Compiler Overview

Translation Overview - Lexical Analysis

Y.N. Srikant Compiler Overview

Translation Overview - Syntax Analysis

Y.N. Srikant Compiler Overview

Translation Overview - Semantic Analysis

Y.N. Srikant Compiler Overview

Translation Overview - Intermediate Code Generation

Y.N. Srikant Compiler Overview

Intermediate Code Generation

While generating machine code directly from source code
is possible, it entails two problems

With m languages and n target machines, we need to write
m × n compilers
The code optimizer which is one of the largest and
very-difficult-to-write components of any compiler cannot be
reused

By converting source code to an intermediate code, a
machine-independent code optimizer may be written
Intermediate code must be easy to produce and easy to
translate to machine code

A sort of universal assembly language
Should not contain any machine-specific parameters
(registers, addresses, etc.)

Usually produced during a traversal of the semantically
validated syntax tree

Y.N. Srikant Compiler Overview

Different Types of Intermediate Code

The type of intermediate code deployed is based on the
application
Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation
Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations

Conditional constant propagation and global value
numbering are more effective on SSA

Program Dependence Graph (PDG) is useful in automatic
parallelization, instruction scheduling, and software
pipelining

Y.N. Srikant Compiler Overview

Translation to produce Quadruples for Expressions

1 S → id := E {idptr := search(id .name);
if idptr 6= NULL then gen(idptr ′ :=′ E .result else error}

2 E → E1 + E2 {E .result := gentemp();
gen(E .result ′ :=′ E1.result ′ +′ E2.result)}

3 E → E1 ∗ E2 {E .result := gentemp();
gen(E .result ′ :=′ E1.result ′ ∗′ E2.result)}

4 E → −E1 {E .result := gentemp();
gen(E .result ′ :=′ ′uminus′ E1.result)}

5 E → (E1) {E .result := E1.result}
6 E → id {idptr := search(id .name);

if idptr 6= NULL then E .result := idptr else error}

Names are stored in a symbol table; the routine
search(id .name) gets a pointer to the name id .name
gentemp() generates a temporary name, puts it in the
symbol table, and returns a pointer to it

Y.N. Srikant Compiler Overview

Quadruples for Expressions - An Example of
Translation

Y.N. Srikant Compiler Overview

Translation Overview - Code Optimization

Y.N. Srikant Compiler Overview

Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code
Improvement may be time, space, or power consumption
It changes the structure of programs, sometimes of beyond
recognition

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)

Y.N. Srikant Compiler Overview

Examples of Machine-Independant Optimizations

Common sub-expression elimination
Copy propagation
Loop invariant code motion
Partial redundancy elimination
Induction variable elimination and strength reduction
Code opimization needs information about the program

which expressions are being recomputed in a function?
which definitions reach a point?

All such information is gathered through data-flow analysis

Y.N. Srikant Compiler Overview

Translation Overview - Code Generation

Y.N. Srikant Compiler Overview

Code Generation

Converts intermediate code to machine code
Each intermediate code instruction may result in many
machine instructions or vice-cersa
Must handle all aspects of machine architecture

Registers, pipelining, cache, multiple function units, etc.
Generating efficient code is an NP-complete problem

Tree pattern matching-based strategies are among the best
Needs tree intermediate code

Storage allocation decisions are made here
Register allocation and assignment are the most important
problems

Y.N. Srikant Compiler Overview

Machine-Dependent Optimizations

Peephole optimizations
Analyze sequence of instructions in a small window
(peephole) and using preset patterns, replace them with a
more efficient sequence
Redundant instruction elimination
e.g., replace the sequence [LD A,R1][ST R1,A] by [LD
A,R1]
Eliminate “jump to jump” instructions
Use machine idioms (use INC instead of LD and ADD)

Instruction scheduling (reordering) to eliminate pipeline
interlocks and to increase parallelism
Trace scheduling to increase the size of basic blocks and
increase parallelism
Software pipelining to increase parallelism in loops

Y.N. Srikant Compiler Overview

