An Overview of a Compiler - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Compiler Overview

Outline of the Lecture

@ Compiler overview with block diagram

@ Lexical analysis with LEX

© Parsing with YACC

© Semantic analysis with attribute grammars

© Intermediate code generation with syntax-directed
translation

© Code optimization examples

Topics 1 to 4 have been covered in Part | of the lecture

Y.N. Srikant Compiler Overview

Compiler Overview

characiter stream

optimized
Lexical Analyzer target-machine code
'
token stream Machine-Dependent
1 Code Optimizer

i

Syntax Analyzer target-machine code
i Symbol N
syntax tree Table

1 Code Generator

Semantic Analyzer

t
optimized
intermediate gepresentation

)
annotated syntax tree

‘ Machine-Independent
Intermediate Code Generator Code Optimizer

;]
intermediate representation

Y.N. Srikant Compiler Overview

Translation Overview - Lexical Analysis

fahrenheit = centigrade * 1.8 + 32

Lexical Analyzer

<id,1> <assign> <id,2> <multop>
<fconst, 1.8> <addop> <iconst,32>

Syntax Analyzer

Y.N. Srikant Compiler Overview

Translation Overview - Syntax Analysis

<id,1> <assign> <id,2> <multop>
<fconst, 1.8> <addop> <iconst,32>

l

Syntax Analyzer

l
(=)

id ()
SO

@@

Semantic Analyzer

Y.N. Srikant Compiler Overview

Translation Overview - Semantic Analysis

syntax tree l

Semantic Analyzer|

Int.Code Generator

Y.N. Srikant Compiler Overview

Translation Overview - Intermediate Code Generation

Int.Code Generator

!
t1=id2* 1.8
t2 = intofloat(32)
t3=t1+t2
id1=1t3

!
Code Optimizer

Y.N. Srikant Compiler Overview

Intermediate Code Generation

@ While generating machine code directly from source code
is possible, it entails two problems

e With mlanguages and n target machines, we need to write
m x n compilers
e The code optimizer which is one of the largest and
very-difficult-to-write components of any compiler cannot be
reused
@ By converting source code to an intermediate code, a
machine-independent code optimizer may be written
@ Intermediate code must be easy to produce and easy to
translate to machine code
e A sort of universal assembly language
e Should not contain any machine-specific parameters
(registers, addresses, etc.)
@ Usually produced during a traversal of the semantically
validated syntax tree

Y.N. Srikant Compiler Overview

Different Types of Intermediate Code

@ The type of intermediate code deployed is based on the
application

@ Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation

@ Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations

e Conditional constant propagation and global value
numbering are more effective on SSA

@ Program Dependence Graph (PDG) is useful in automatic

parallelization, instruction scheduling, and software

pipelining

Y.N. Srikant Compiler Overview

Translation to produce Quadruples for Expressions

@ S — id := E {idptr := search(id.name);

if idptr # NULL then gen(idptr ' :=" E.result else error}
Q@ E — E; + E; {E.result := gentemp();

gen(E.result’ :=' Eq.result’ +' E,.result)}
©Q E — E; x E; {E.result := gentemp();

gen(E.result’ :=" Eq.result’ " E.result)}
Q E — —E; {E.result .= gentemp();
gen(E.result’ :=" 'uminus’ Ey.result)}

@ E — (Ey){E.result := Ey.result}
Q E — id {idptr := search(id.name);
if idptr # NULL then E .result := idptr else error}

@ Names are stored in a symbol table; the routine
search(id.name) gets a pointer to the name id.name

@ gentemp() generates a temporary name, puts it in the
symbol table, and returns a pointer to it

Y.N. Srikant Compiler Overview

Quadruples for Expressions - An Example of
Translation

E.result is {2

id (a) = G t2 =t1+d

t1 :=b*c
E.result is £1

E.resultis d

E.result is b E.resultis ¢

id,(d)

id,(b) idy(c)

Y.N. Srikant Compiler Overview

Translation Overview - Code Optimization

t1=id2* 1.8
t2 = intofloat(32)
t3=t1+12
id1=1t3

l

Code Optimizer

l

t1=id2*1.8
idl =11 +32.0

l

Code Generator

Y.N. Srikant Compiler Overview

Machine-independent Code Optimization

@ Intermediate code generation process introduces many
inefficiencies

e Extra copies of variables, using variables instead of

constants, repeated evaluation of expressions, etc.

@ Code optimization removes such inefficiencies and
improves code

@ Improvement may be time, space, or power consumption

@ It changes the structure of programs, sometimes of beyond
recognition

e Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

@ Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)

Y.N. Srikant Compiler Overview

Examples of Machine-Independant Optimizations

@ Common sub-expression elimination
@ Copy propagation

@ Loop invariant code motion

@ Partial redundancy elimination

@ Induction variable elimination and strength reduction
@ Code opimization needs information about the program

e which expressions are being recomputed in a function?
e which definitions reach a point?

@ All such information is gathered through data-flow analysis

Y.N. Srikant Compiler Overview

Translation Overview - Code Generation

t1=id2*1.8
id1=t1+32.0

|

Code Generator

l

LDF R2, id2

MULF R2, R2,1.8
ADDF R2, R2, 32.0
STF id1, R2

Y.N. Srikant Compiler Overview

Code Generation

@ Converts intermediate code to machine code
@ Each intermediate code instruction may result in many
machine instructions or vice-cersa
@ Must handle all aspects of machine architecture
e Registers, pipelining, cache, multiple function units, etc.
@ Generating efficient code is an NP-complete problem

e Tree pattern matching-based strategies are among the best
e Needs tree intermediate code

@ Storage allocation decisions are made here

e Reqgister allocation and assignment are the most important
problems

Y.N. Srikant Compiler Overview

Machine-Dependent Optimizations

@ Peephole optimizations

e Analyze sequence of instructions in a small window
(peephole) and using preset patterns, replace them with a
more efficient sequence

e Redundant instruction elimination
e.g., replace the sequence [LD A,R1][ST R1,A] by [LD
AR1]

e Eliminate “jump to jump” instructions

e Use machine idioms (use INC instead of LD and ADD)

@ Instruction scheduling (reordering) to eliminate pipeline
interlocks and to increase parallelism

@ Trace scheduling to increase the size of basic blocks and
increase parallelism

@ Software pipelining to increase parallelism in loops

Y.N. Srikant Compiler Overview

