
Machine-Independent Optimizations - Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Machine-Independent Optimizations



Outline of the Lecture

Global common sub-expression elimination
Copy propagation
Loop invariant code motion
Induction variable elimination and strength reduction
Region based data-flow analysis

Y.N. Srikant Machine-Independent Optimizations



Elimination of Global Common Sub-expressions

Needs available expression information
For every s : x := y + z, such that y + z is available at the
beginning of s’s block, and neither y nor z is defined prior
to s in that block, do the following

1 Search backwards from s’s block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z

2 Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u := y + z;w := u}, and replace s by x := u

Repeated application of GCSE may be needed to catch
“deep” CSE

Y.N. Srikant Machine-Independent Optimizations



GCSE Conceptual Example

Y.N. Srikant Machine-Independent Optimizations



GCSE on Running Example - 1

Y.N. Srikant Machine-Independent Optimizations



GCSE on Running Example - 2

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation

Eliminate copy statements of the form s : x := y , by
substituting y for x in all uses of x reached by this copy
Conditions to be checked

1 u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

2 On every path from s to u, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y . This ensures that the copy is valid

The second condition above is checked by using
information obtained by a new data-flow analysis problem

c_gen[B] is the set of all copy statements, s : x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s
c_kill[B] is the set of all copy statements, s : x := y , s not in
B, such that either x or y is assigned a value in B
Let U be the universal set of all copy statements in the
program

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation - The Data-flow Equations

c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path
c_out [B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] =
⋂

P is a predecessor of B

c_out [P], B not initial

c_out [B] = c_gen[B]
⋃

(c_in[B]− c_kill[B])

c_in[B1] = φ, where B1 is the initial block
c_out [B] = U − c_kill[B], for all B 6= B1 (initialization only)

Y.N. Srikant Machine-Independent Optimizations



Algorithm for Copy Propagation

For each copy, s : x := y , do the following
1 Using the du − chain, determine those uses of x that are

reached by s
2 For each use of x found in (1) above, check that

(i) s is in c_in[B], where B is the block to which the use of x
belongs. This ensures that

s is the only definition of x that reaches this block
No definitions of x or y appear on this path from s to B

(ii) no definitions x or y occur within B prior to this use of x
found in (1) above

3 If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation Example 1

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations



GCSE and Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations



GCSE and Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations



Detection of Loop-invariant Computations

Given a loop L, and the u − d and d − u chains

Mark as “invariant”, those statements whose operands are all
either constant or have all their reaching definitions outside L

Repeat {
Mark as “invariant” all those statements not previously
so marked all of whose operands are constants, have all
their reaching definitions outside L, or have exactly
one reaching definition, and that definition is a statement
in L marked “invariant”

} until no new statements are marked “invariant”

u − d chains are useful in marking statements as “invariant”
d − u chains are useful in examining all uses of a definition
marked “invariant”

Y.N. Srikant Machine-Independent Optimizations



Loop Invariant Code motion Example

Y.N. Srikant Machine-Independent Optimizations



Loop-Invariant Code Motion Algorithm

1 Find loop-invariant statements
2 For each statement s defining x found in step (1), check

that
(a) it is in a block that dominates all exits of L
(b) x is not defined elsewhere in L
(c) all uses in L of x can only be reached by the definition of x

in s
3 Move each statement s found in step (1) and satisfying

conditions of step (2) to a newly created preheader
provided any operands of s that are defined in loop L have
previously had their definition statements moved to the
preheader

4 Update all the u − d and d − u chains appropriately

Y.N. Srikant Machine-Independent Optimizations



Code Motion - Violation of condition 2(a)

Y.N. Srikant Machine-Independent Optimizations



Code Motion - Violation of condition 2(b)

Y.N. Srikant Machine-Independent Optimizations



Code Motion - Violation of condition 2(c)

Y.N. Srikant Machine-Independent Optimizations



Induction Variables

An induction variable x of a loop L changes its value only
through an increment or decrement operation by a
constant amount
Basic induction variables: variables i whose only
assignments within a loop L are of the form i := i ± n,
where n is a constant
Another variable j which is defined only once within L, and
whose value is c ∗ i + d (linear function of i) is an i .v . in the
family of i
We associate a triple (i , c,d) with j (c and d are constants),
and i belongs to its own family with a triple (i ,1,0)

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Example 1

Y.N. Srikant Machine-Independent Optimizations



Induction Variables - Example 2

Y.N. Srikant Machine-Independent Optimizations



Detection of Induction Variables

We need a loop L, reaching definitions, and loop-invariant
computation information

1 Find all the basic i .v ., by scanning the statements of L
2 Search for variables k , with a single assignment to k within

L, having one of the following forms:
k := j ∗ b, k := b ∗ j , k := j/b, k := j ± b, k := b ± j ,
k := j ∗ b ± a, k := a± j ∗ b, where b is a constant and j is
an i.v., basic or otherwise
(a) If j is basic, then for k := j ∗ b, the triple for k is (j ,b,0)

(similarly for other forms)
(b) If j is not basic, then let its triple be (i , c,d). We need to

check two more conditions
(i) there is no assignment to i between the lone point of

assignment to j in L and the assignment to k
(ii) no definition of j outside L reaches k

Y.N. Srikant Machine-Independent Optimizations


